
DRIVING QUALITY IN-BETWEEN
REQUIREMENTS AND TESTING

Presented by:

Darin Kalashian and Neha Chopra

January 19th, 2022

Let’s Warm Everyone Up With
A Game First

Let’s Play…

Pin The Quality On The Product

1/19/2022 2

Pin The Quality On The Product

1/19/2022 3

The Quality Engineering Misdirection
In most organizations today, you’ll find Software Quality Assurance (SQA) mainly
participating in only two (2) distinct phases of the Software Development Life Cycle (SDLC)

•REQUIREMENTS ANALYSIS ACTIVITIES/PHASE
“The goal of analysis is to determine where the problem is, in an attempt to fix the system.
This step involves breaking down the system in different pieces to analyze the situation, analyzing
project goals, breaking down what needs to be created, and attempting to engage users so that
definite requirements can be defined” - wikipedia

•TESTING ACTIVITIES/PHASE
“The execution of an Object Under Test (OUT) under specific preconditions with specific stimuli
so that its actual behavior can be compared with its expected or required behavior”

– Software Engineering Institute, Carnige Mellon

Plan Requirements Design Code Test Release

How to we drive quality here??

• Good User Stories
• Acceptance Criteria
• Testability

• Test Cases
• Test Data
• Test Results

Looking at a typical SDLC:

1/19/2022 4

Our Goals For This Presentation
Demonstrate how to engage software teams during Design and Architecture activities to ensure

that the outputs are ready for construction and a seamless path to production deployment

 Reduce defects and risks in product design and architecture, long before there is even a product to test.

 Engaged to whole team to proactively prevent problems from being built into the product.

 As with all quality engineering patterns, the team should take ownership and drive ….but….

…. You can come across really smaaaaart if you are the one to introduce them to it

Specifically, we will explore the following practices:

1. Building a model of the design/architecture to use as a proxy until we have an implementation

2. Use team brainstorming and collaboration techniques to identify risks and defects in the design

3. Figure out how to prioritize the identified risks so we address the more impactful ones first

Bonus Benefit: Will reduce the load and dependency on testing to find defects in the “end-game”,
giving testers more time to do whatever they enjoy.

(typically finding “other” ways to improve the product)1/19/2022 5

Software Modeling
As a Developmental Quality Tool

What is a Model and Why is it Useful?
What comes to mind when you think of what is a model?

1111

1111111111110

11110011111111000000

11111111111000000000000

11111111111111000000

1111111111110

11111/19/2022 7

What is a Model and Why is it Useful?
What comes to mind when you think of what is a model?

An abstraction or representation, usually smaller and simpler, of what the final product will be when finished

Models use familiar objects to represent unfamiliar things.

Models can help you visualize, or picture in your mind, something that is difficult to see or understand.

Models can help scientists engineers communicate their ideas, understand processes, and make predictions.

-Texas Education Agency

Modeling and the use of Simulation on that model is a powerful tool for the evaluation and analysis of new
system designs, modifications to existing systems and proposed changes to control systems and operating
rules.

- J.S. Carson, Introduction to Modeling and Simulation,
IEEE Winter Simulation Conference, 2005.

We use a model as a tool to represent how a “system” could be realized
We can then use the model to explore simulated responses to

real life situational events and stimuli.
1/19/2022 8

Why Model A Software Application’s Architecture?

Software Applications Tend To Be Very Complex
• Hard to Understand End-to-End or at the System Level
• Hard to communicate across the team and to external stakeholders

A model of our Software Architecture enables us to:
• See and provide feedback prior to implementation

(does it support high cohesion and low coupling)

• Map requirements into the design (What needs to do what/where)

• Have a reference or blueprint for supporting, maintaining and testing

A Software Model is a High Value Quality Tool for Design Activities
It allows us to Identify Risks in the Design and Address them PROACTIVELY

1/19/2022 9

STOP! Don’t Pass Go (without a Design Model)

“Hey we’re Agile! I have my User Story! Why can’t I just start implementing?”
“We use the Unified Modeling Language (UML) and already do Class Diagrams
and Sequence Charts. Isn’t that the same”

Modeling the Design is a good investment to promote quality
May be the difference between releasing a

Production Ready design versus a Proof of Concept design

Good Start, but you need to understand the following:
• The system from top-to-bottom, left- to-right, not just one level like “Classes”

• The flow of data and control across the system
(like a Sequence Diagram; but easier to translate into design)

• Identification of requirements to be implemented in the components of the design

• Any un-addressed risks in the system

1/19/2022 10

What Should A Software Model Provide?
The Model should identify:
• Entities and interfaces : Defines what are we responsible for and what are we interfacing too

 External
 Internal

• Programmatic flow : How does data and control move though our system
 Data flow
 Control Flow
 Architecture Flow

• Feature Abstraction : Understand the boundaries of functionality; where and with what purpose
 Top-To Bottom (System, Interfaces, Components, Objects, Modules, Classes, …)
 Smaller, more Cohesive, less coupled design
 Requirements Mapping

With this Model, we’ll have a tool to aid in:
• Communication

 Becomes a contract/reference point for expressing a common vision of the design
 Reference for training/maintenance/debugging

• Gathering Feedback as a proxy for the implementation,
 Allows us to “test” the design
 Identifying risks
 Identifying new requirements

1/19/2022 11

Welcome to ND Industries: TikyMail Application
BUSINESS OPPORTUNITY:
Hard to communicate with younger generation, who don’t want to “read” but would rather watch
a “TikTok” video to communicate

OBJECTIVE:
Build a system that can automatically turn a “text” based email into a TikTok video using a series
publically available video snippets to communicate the message of the email.

TIKYMAIL (TM) REQUIREMENTS:
• TM SHALL[1] be a cloud based Software as a Service Application

..
• TM SHALL[22] support any HTML5 compliant browser

..
• TM SHALL[43] support a “preview” of the outgoing video prior to sending

..
• TM SHALL[102] ensure all user information is stored encrypted at rest

1/19/2022 12

MODEL: TikyMail Context Diagram (Level 0)

https://miro.com/app/board/uXjVOYNHAy8=/?invite_link_id=725469525778

Objective: EXTERNAL .vs. INTERNAL; interfaces

1/19/2022 13

MODEL: TikyMail Application Diagram (Level 1)
Objective: (1) Identify Internal Services within our Application

(2) Map External Interfaces to Internal Services

1/19/2022 14

MODEL: TikyMail Service Diagram (Level 2.x)
Objective: (1) Decompose Service to Modules/Components/Etc..

(2) Mapping Interfaces (data and control)

1/19/2022 15

Design Model Layers

Defining different layers of abstraction aides in organization and focus

• Context Diagram (Level 0)

• Application Diagram (Level 1)

• Service Diagrams (Level 2)

• Package Diagrams

• Component Diagram

• Class Diagram (Level x)

• Data Object Diagram
1/19/2022 16

Validating Design Meets Requirements

🗹

🗹

🗷

🗹

 Quality Check: Design implements all requirements?
Have we mapped our requirements into design?

 Quality Check: Is the design easy to follow/understand?
 Quality Check: Does the design follow good design patterns?

TikyMail (TM) Requirements:
TM SHALL[1] be a cloud based Software as a Service Application

TM SHALL[22] support any HTML5 compliant browser

TM SHALL[43] support a “preview” of the outgoing video prior to sending

TM SHALL[102] ensure all user information is stored encrypted at rest
🗷

🗹
🗹

🗹

1/19/2022 17

Identifying Risks and
Defects in The Design

Why Do Teams Fail While Testing Design?

Problem 1: In the Design Phase, testing the product when there is no real Product seems infeasible.

Problem 2: Teams don’t collaborate as much on the design and architecture. They miss the
opportunity to apply different experiences and skillsets to improve the design.

Problem 3: Not clear how to test or improve a design or architecture? What makes a good design is
not easy to define.

1/19/2022 19

Addressing Defects and Risks in Design
- A Defect in simple terms seems to be a problem with an object with what it is expected to do.

Ex: If an umbrella can not protect you from rain, it is defected.
In terms of software, a Defect is an error which causes incorrect or unexpected results from a
software program which does not meet actual requirements.
Quality checks that fail validation uncovers defects.

- Risk is an expectation of loss; a potential problem that may or may not occur in the future. Risks
are all about uncertainty: not what will happen, but what might happen.
Every functional/non-functional system has risks associated with it. Even Covid-19 vaccines have
risks associated. The sooner we identify and take preventive actions, the better.
Risks can be associated with People, Technology, Process.

Using a software model with a collaborative brainstorming activity to focus
on identifying defects and risks, the team can significantly improve the

quality of the design and thus, implement less defects.
1/19/2022 20

Risk Storming – A Collaborative Approach

- Risk-storming is a quick technique that
provides a collaborative way to identify
and visualize risks.

- Collaboration during risk storming is
the essence as people working on
building the actual system to the
people managing are great candidates
who can identify the risks better.
Including more people would remove
the biases associated with the skill,
perspectives.

- The whole team architects, developers,
testers, project managers, operational
staff, etc. can take part in this.

1/19/2022 21

Risk Storming Process

1 Draw architecture diagrams
Modelling technique like c4
can be used to create an
architecture diagram.

2 Identify the risks individually
Ask People to identify risks
and summarise each risks.

3 Converge risks on diagrams
Relate Each risks to the
associated component in
architecture diagram.

4 Review & summarise risks

Discuss and summarise
outputs to resolve
disagreements and remove
less probable risks.

1/19/2022 22

Quantifying and Prioritizing Risk
Evaluate the probability of that risk happening against the negative impact of it happening.

1. Probability: How likely is it that the risk will happen?

2. Impact: What is the negative impact if the risk does occur?

Prioritizing risks is then about ranking each risk after multiplying the numbers in the risk matrix together

1/19/2022 23

Exercise: Risk Storming TikyMail

https://miro.com/app/board/uXjVOYNHAy8=/?invite_link_id=725469525778

In Today’s Exercise:
Risk Hunting in Application Design (Level 1)

Invited:

• Developers
• Quality Engineering
• Support Engineering
• Anyone else who likes donuts

Goal:

Identify where this design fails?

1/19/2022 24

TikyMail Risk Storming Results

1/19/2022 25

TikyMail Risk Storming Results
Low 1

Medium 2

High 3

Risk # Description Probability Impact Priority Risk Mitigation Actions

R1 Malicious Data 2 3 6 A1: Regular Backup …..

R2 No Way to Manage User Data 1 2 2 A2: Add CRUD for
user…

R3 Account Storage commingled
with Processing

1 2 2 A3: …

R4 Returned Video Too Large 3 3 9 ….

R5 External TikTok Server not
reachable

2 3 6 …

R6 External Mail Server not
reachable

1 3 3 …

1/19/2022 26

Benefits of Risk Storming

o Quickly identify risks in the proposed system architecture.

o Visualize the system by considering the level of risk

o Constrain risk identification to architectural concerns

o Provide a platform for all team members to elevate their concerns.

o By having Testers participate in the design Review
• Develop an understand the design and the architecture to be implemented
• Insert their “tester” perspective early on in the development process
• Better understand how to test the product with a higher likelihood of finding a hidden bug/defect.

1/19/2022 27

Advanced Risk Mitigation
Examples Applying Quality Tools

Risk Mitigation on Steroids

Risk Identification is a good first step.. but what next?
How do you minimize/negate the Risk during development?

 Ignore – Won’t happen here

 Ad-hoc mitigation – hope it gets addressed

 Use structured mitigation techniques

Two Effective Tools to use in a structured mitigation approach:
 Cause-Effect Diagrams (Fishbone Diagram)

 Failure Modes and Effect Analysis (FMEA)

1/19/2022 29

Cause/Effect (Fishbone) Diagram
A graphical representation used to organize and display the interrelationships of various possible root
causes of a problem. Possible causes of a real or potential defect or failure are organized in categories and
subcategories in a horizontal tree-structure, with the (potential) defect or failure as the root node.

- ISTQB Glossary

Fishbone diagram is a is a visualization
tool for categorizing the potential
causes of a problem.

Also known as Cause and Effect
Diagram, Ishikawa Diagram,
Herringbone Diagram, and Fishikawa
Diagram

It combines brainstorming with Mindmap
for identifying all areas that are
contributing to a problem rather than only
the most obvious ones.

1/19/2022 30

Steps to draw Fishbone Diagram

Identify the Problem

Agree on the
problem
statement

Work Out the Major
Factors involved

Agree on the
major categories
of causes of the
problem. (Branch
of the fish)

Identify Possible
Causes

Brainstorm all the
possible causes of
the problem. Ask
“Why does this
happen?” to find
sub-causes.

Analyze Your
Diagram

Continues to ask
“Why?” and
generate deeper
levels of causes
and continue
organizing them

1/19/2022 31

TikyMail Cause/Effect Diagram Example

Firewall issue

DNS Server error

Domain name expired

Incorrect Credentials

Environmental (Cloud)Human Errors

Application Method/Process

Problem:

Website is
Unavailable

Improper and rough
handling of servers

Carelessness

Patch Update

Cyber Attack

Server Overload

1/19/2022 32

Failure Mode and Effects Analysis (FMEA)

Failure Modes and Effects Analysis (FMEA) is a step-by-step approach for identifying all possible
failures in a design. Failures are prioritized according to how serious their consequences are (Severity),
how frequently they occur (Occurrence), and how easily they can be detected (Detection).

- American Society for Quality (ASQ)

Failure Modes means the ways, or modes, in which something might fail. Failures are any
errors or defects, especially ones that affect the customer.

Effects analysis refers to studying the consequences of those failures.

Our goal is to prioritize the potential failures from most serious to least.

To prioritize, we’ll use a formula to calculate a Risk Index. The Risk Index will be calculated by:

Risk Index = Severity * Occurrence * Detection
Where:
 Severity defines how serious the consequences would be if the risk occurred; [0.1 (least) ~ 1.0 (most)]
 Occurrence defines how frequently the risk would be encountered; and ; [0.1 (infrequent) ~ 1.0 (frequent)]

 Detection defines how easily the risk could be detected if it occurred [0.1 (easily detected) ~ 1.0 (difficult to detect)]
1/19/2022 33

TikyMail FMEA Example
Application Design Risk

1. List Risks
2. Assign Severity; Occurrence; and Detection factors to calculate Risk
3. Sort Risks
4. Identify Actions to mitigate risks

Risk # Description S O D Risk
Score Actions To Mitigate Risk

R1 Malicious Data Sent to TikyMail 1.0 0.3 0.3 0.09

R2 No Way to Manage User Data 1.0 1.0 1.0 1.00

R3 Account Storage comingled with Processing 0.8 1.0 0.8 0.64

R4 Returned Video To Large 0.9 0.5 0.1 0.045

R5 External TikTok Server not reachable 1.0 0.2 0.1 0.02

R6 External Mail Server not reachable 1.0 0.2 0.1 0.02

1/19/2022 34

TikyMail FMEA Example
Application Design Risk Prioritized

1. List Risks
2. Assign Severity; Occurrence; and Detection factors to calculate Risk
3. Sort Risks
4. Identify Actions to mitigate risks

Risk # Description S O D Risk
Score Actions To Mitigate Risk

R2 No Way to Manage User Data 1.0 1.0 1.0 1.00 A1: Add CRUD for User Data

R3 Account Storage comingled with Processing 0.8 1.0 0.8 0.64 A2: Factor design to separa..

R1 Malicious Data Sent to TikyMail 1.0 0.3 0.3 0.09 A3: ….

R4 Returned Video To Large 0.9 0.5 0.1 0.045

R5 External TikTok Server not reachable 1.0 0.2 0.1 0.02

R6 External Mail Server not reachable 1.0 0.2 0.1 0.02

1/19/2022 35

In Summary
• Don’t leave your design and architecture to chance – Engineer IT!

- Model it to get a better understanding of it
- Make sure it addresses all of your requirements
- Future proof it – Change WILL happen

• Use team collaboration to review your design model
- Understand where are the risks in the proposed design
- Where will it fail – it will
- Have focused reviews on Technology; Security; Maintainability; Performance

• Address your risks in Priority Order
- You most like won’t have resources to address them all
- Go for the ones with the highest return on investment
- Use structured techniques to problem solve and drive exploration

1/19/2022 36

TikyMail – ProtoType v1

1/19/2022 37

Thank You!

Questions??

1/19/2022 38

Contacts:

Darin Kalashian : darin@dskquality.com

Neha Chopra : chopraneha2711@gmail.com

Helpful References

Modeling resources
• https://www.c4modeling.org
• https://structurizr.org/
• https://simonbrown.je/
• https://en.m.wikipedia.org/wiki/4%2B1_architectural_view_model
• https://modeling-languages.com/benefits-modeling-or-how-convince-your-project-manager/
• https://www.lucidchart.com/blog/types-of-UML-diagrams

RiskStorming: https://riskstorming.com

Tools:
• https://www.miro.com - White boarding application
• https://www.canva.com - Fishbone creation tool

1/19/2022 39

Backup

Driving Quality In-Between Requirements and Testing

Presented by Darin Kalashian and Neha Chopra

Quality’s typical role is to champion testing and validation at the end of the product development cycle, with the goal to confirm that the product meets defined requirements and use
cases. As we strive to excel in our “push left” world, frequently, you’ll find Quality Engineering actively in play, working with the team to ensure that clear and concise requirements are
produced during story planning. Unfortunately, the span of development after planning and before testing, that being the Design and Architecture phase, typically has quality absent. In
practice, quality will not be achieved if the product was not designed right from the start, no matter how good the testing efforts are.

In this presentation, we’ll explore how to advance the overall product quality from within the product development path, identifying a class of impactful issues that may elude the best
tests. We will explore three patterns that can be used to improve product architecture and design quality, proactively. These techniques will empower the development team to take
ownership of the product quality, in ways that testing would have a hard time finding (or at least in a cost efficient manner).

At the conclusion of this talk, participants will know how to:

• Trace requirements into design architecture
• Facilitate team collaboration to identify risks in the architecture
• Rank and prioritize identified risks to build a plan to proactively address design weaknesses (long before the code has even been written).

Author Biography's:

Darin Kalashian is a software engineering and quality evangelist, currently working at VMware as a Senior Software Engineering Manager. Darin has always believed Quality is a team
sport and has spent most of his career to insert quality engineering principles throughout the development process. While testing surely provides a safety net for release, inserting
quality habits from day one drives efficiency and effectiveness improvements that testing has a hard time competing with.

Neha Chopra is a software quality advocate working on her Thesis while working at Red Hat as a Software Automation Engineer. For Neha, the irony of being a successful tester is to
believe in failure. Neha is motivated to work with her teams to effectively apply quality techniques where they will be most impactful. Understanding that test automation has its limits,
Neha works to explore ways to insert human logic and heuristics to complement testing and deliver quality.

1/19/2022 41

