
Comparing
test automation
frameworks

www.testim.io
Oren Rubin

SQGNE SEP 2020

Also known as:

Puppeteer vs Selenium vs Cypress vs Playwright

ABOUT MEABOUT ME

www.testim.io

Testim.io
CEO

Applitools
Director of R&D

Wix
Web Architect

Cadence
Compiler Engineer

IBM
Cloud Engineer

Mentor
Google Launchpad

Developer Expert
Google

External Lecturer
Technion University

Meetup Co-Organizer
Selenium IL, GDG, Ember.js

Testim
Tests that deliver

Testim is the FIRST AI-based
test automation platform
(2014).

We use, integrate, and develop on
top of many test infrastructure.
We know them intimately.

Trusted by thousands of devs to
author tests super fast, and auto-
healing them.

So many test
frameworks!
why?

Measured across 284 companies.

Tests means automated E2E tests run as part of the dev cycle.

E2E tests as
part as dev
life cycle

Tests
Authoring
Speed

Relatively stable and low amount of
tests written. This is data of senior
automation engineers:

Part 1: Automation Frameworks Infrastructure

Part 2: Key Differences

Part 3: Takeaways

Agenda

Part 4: Testim Playground & Root Cause

Automation
frameworks

PART 01

Automation
Frameworks

An automation framework automates
your browser.

It allows simulating user actions in
browsers like clicks.

Automation
Frameworks

Before discussing frameworks. There
are two fundamental ways to execute
actions in browsers:

Through the debugger and through
executing JavaScript in the page.

HTML

How Events
Work
CAPTURE & BUBBLE

button.addEventListener("click",

() => console.log("Ahoy!"),

true

);

BODY

HEADER

BUTTON

<html>
<body>
<header>

<button>
Hello

</button>
</header>

</body>

</html>

HTML

Automation fires Input.dispatchMouseEvent

WebSocket
Message

Debugger
Input

Dispatcher

OS Specific
Routing

Find Actual
Element X/Y

OS Multi
Monitor /

Zoom
Handling

Mac Does
CGPostMouseEvent

Most popular automation frameworks

Automation
Frameworks

🎭

Selenium Webdriver : Automation Frameworks
Infrastructure

Selenium Grid: Execution Environment

Selenium IDE: Basic Record/Playback

Selenium
A family of tools

Testing
Framework -

Selenium

● By far the most popular framework for

software testing.

● Open standard & open source

● Uses an HTTP REST JSON protocol for

sending commands called the

“Webdriver Protocol”

● https://www.w3.org/TR/webdriver/

https://www.w3.org/TR/webdriver/

Selenium Code

// await let driver = new Chrome(); // Open Google Chrome on THIS machine

await driver.get('http://demo.testim.io');

await driver.findElement({ css: 'button'}).click();

await driver.findElement({ css: '#login'}).sendKeys(‘Testim FTW!’);

await driver.findElement({ css: '[type=pass]'}).sendKeys('12345');

await driver.findElement({ css: '[form=login]'}).click();

npm install selenium-webdriver

websocket

?
WebDrive
r
Protocol

Binding
(SDK) Driver

HTTP - The Universal Protocol

Chromedriver.exe

IEDriver.exe

POST /session/

{

"capabilities": {

"browserName" :
"Chrome",

"browserValue":
"Chrome"

}

}

Selenium -
Internals

ChromeDriver is an
HTTP Server

POST /session/<session-id>

/element/<element-id>

/click

Selenium -
Internals

Status ExecuteClickElement(...) {

Status status = GetElementTagName(...);

events.push_back(MouseEvent(kMovedMouse, kNoneMouseButton));

events.push_back(MouseEvent(kPressedMouse, kLeftMouseButton);

events.push_back(MouseEvent(kReleasedMouse, kLeftMouseButton);

status = web_view->DispatchMouseEvents(events) session->GetCurrentFrameId());

return status;

}

ExecuteElementClick

ChromeDriver is an HTTP Server

Selenium -
Internals

CommandMapping(kPost,

"session/:sessionId/element/:id/click",

WrapToCommand("ClickElement"

base::BindRepeating(&ExecuteClickElement)

)),

Status WebViewImpl::DispatchMouseEvents(events) {

for (auto it = events.begin(); it != events.end(); ++it) {

params.SetString("type", GetAsString(it->type));

// …

status = client->SendCommand("Input.dispatchMouseEvent", params);

}

return Status(kOk);

}

DispatchMouseEvents

Selenium

Pros:
1. Runs on all browsers.
2. Many drivers and clients (language).
3. Dispatches clicks with debugger.
4. Lots of grid options.

Cons:
1. Not Bi-Directional* yet because it’s an
http server (Working on it now)

2. Harder to set up yourself than
alternatives.

* Allows mock network, console log gathering on the fly, wait for idle
network,..

Cypress

Cypress is a e2e testing
framework.

It focuses on trying to provide
good developer experience and
an integrated environment.

Testing
Framework -

Cypress

Clicking in Cypress works like
Selenium 1 and dispatches
DOM Events Directly

return _.extend({},

mouseDownPhase.events,

mouseUpPhase.events,

mouseClickEvents

)

This is flaky for cross browser and
cross site tests. It’s part of why
selenium has its reputation.

Cypress

No multi tab/window support,
no hover, and no cross frames nor
Shadow DOM.
Not modern JavaScript (e.g. no loops).
Only chaining

Debugging is less intuitive

Cypress

Expected

Cypress

Actual

Testing
Framework -

Puppeteer

Puppeteer is a popular test automation
tool maintained by Google.

It automates Chrome and Firefox. It is
relatively simple and stable.

Fundamentally, puppeteer was intended to
be an automation tool.

Puppeteer
Architecture

Puppeteer is simple—it’s just a
WebSocket client

Puppeteer
(Node)

Chrome
Debugger.cpp

Through
Dispatcher

WS

Puppeteer
Architecture

Clicking in Puppeteer does the
same thing as ChromeDriver

async click(x, y, options = {}) {
const {delay = null} = options;
this.move(x, y);
this.down(options);
if (delay !== null)
await new Promise(f => setTimeout(f, delay));

await this.up(options);

}

Puppeteer
Code

Puppeteer has a simple model for
browser pages, which helps with
stability.

await page.goto('http://demo.testim.io');

await page.click('button');

await page.type('#login', 'Testim FTW!');

await page.type('[type=password]', 'password');

await page.click('[form=login]');

Puppeteer
Code

Feels like a thin wrapper around
the CDP

Puppeteer

Pros:
1. Simple to set up, installs Chrome in a
working version automatically.
2. Thin wrapper.
3. Bi-Directional (events).
4. Maintained by Google.
5. JS 1st

Cons:
1. Not cross-browser,
2. no easy grids.
3. Not cross-platform (userland projects exist).

Testing
Framework -

Playwright

Playwright is a new popular test
automation tool maintained by
Microsoft.

It automates Chrome, Safari (WebKit) and
Firefox.

It is written by people who previously
worked on Puppeteer at Google.

🎭

Playwright
Architecture

Playwright does the same thing as
Puppeteer and is a WebSocket client

Puppeteer
(Node)

Chrome
Debugger.cpp

Through
Dispatcher

WS

🎭

Playwright
Code

Playwright uses syntax similar to
Puppeteer with minor differences in
construction.

🎭

await page.goto('http://demo.testim.io');

await page.click('button');

await page.type('#login', 'benjamin');

await page.type('[type=password]', 'password');

await page.click('[form=login]');

Playwright
Differences

Playwright offers new features that are
test framework rather than
automation framework specific:

1. Automatically wait for elements to
be available.

2. Built-in support for selecting
elements by text.

3. Allows for isolated sessions on the
same browser more easily.
- Better iframe support using

context

🎭

Playwright

Pros:

1. Simple to set up
2. Cross browser
3. test automation tooling
4. Improved test stability
5. well thought out API.

* easy to migration from/to puppeteer.

Cons:

1. No IE11,
2. no easy grids,
3. No plugin system (compared to

Selenium)

🎭

Key Differences

PART 02

Disclaimer
Testim isn’t discussed below - but it supports all these features because

it is an AI-based solution built on top of test automation frameworks
which we consider infrastructure.

Feature:
Cross
Browser

✅✅✅✅ (Everything)

❌ (Only Chrome/Firefox)

❌ (Only Chrome/Firefox)

✅✅ (Chrome/Safari/Firefox)🎭

Feature:
Multiple Tabs

✅✅ (Simple switch API)

❌ No support.

✅✅✅✅ (Intuitive API)

✅✅✅✅ (Intuitive API)🎭

Feature:
Recording
Tests

✅ Yes

(with Testim Playground / Selenium IDE)

❌ No support.

(in the future maybe)

✅ Yes

(with Testim Playground)

✅ Yes

(with Testim Playground & Now with

Playground CLI)

🎭

Feature:
Trusted
Actions
(e.g. hover)

✅ Yes

❌ No support, can use

puppeteer plugin.

✅ Yes

✅ Yes🎭

Feature:
Parallelism
Grids and
Infrastructur
e

🎭

✅

Basic: Selenium Grid (OS Project)

Advanced: many grid providers

❌ Usually: build your own infra.

Grid providers support coming soon!

🤷 Only in their closed source paid

cloud or build your own

(github.com/agoldis/sorry-cypress).

❌ Usually: build your own infra.

Grid providers support coming soon!🎭

Feature:
Performance

✅ Fast enough, really.

✅ Super fast!

✅ Faster in some cases

✅ Super fast!🎭

gauge.org/2019/08/21/how-taiko-compares-to-other-browser-automation-tools

Feature:
Stability

🎭

❌✅ Complex Automatic Wait

For mechanism.

❌✅Wait fors for certain

things, but have to waitFor

manually for others.

❌✅ Complex mechanism

that doesn’t work with frames.

❌✅✅ Better wait fors for

certain things, but have to

waitFor manually for others.
🎭

Feature:
Smart
Locators

🎭

❌❌❌ No support for selecting

elements in multiple ways

❌❌❌ No support for

selecting elements in multiple

ways

❌❌❌ No support for

selecting elements in multiple

ways

❌❌✅ A start of supporting

custom selector engines.🎭

Feature:
Debugging

🎭

❌✅ A bit hard to figure out all

the terminology. Debugging remote

grids relies on the grid provider.

✅Writing and debugging

JavaScript from your IDE

❌✅ You’re not even writing modern

JavaScript you’re chaining promises.

- Makes up with DOMs.

✅Writing and debugging

JavaScript from your IDE🎭

Feature:
Self-Healing
Tests

🎭

❌No.

❌No.

❌No.

❌No.🎭

Feature:
Docs +
Resources

🎭

✅✅✅ Very large community.

Many testers, tutorials

✅ Small community but lots of

tutorials at this point

✅✅ Small community but super buzz

- and very nice documentation.

✅❌ Some docs and tutorials out of date

due to changing API.

- Most accurate guides at playwright.tech
🎭

Feature:
Autonomous
Testing

🎭

❌No.

❌No.

❌No.

❌No.🎭

PART 03

Summary

testim.io/blog/puppeteer-selenium-
playwright-cypress-how-to-choose/

Automation has a lot of
tradeoffs.

Test automation tools are
different from each other
with each containing pros
and cons.

It makes sense to mix and
match and use tools together.

Testim Playground &
Root Cause

PART 03

testim.io/playground

&

testim.io/root-cause/
(github.com/testimio/root-cause)

IT’S A WRAP!

We’re Hiring

testim.io/careers

or

oren@testim.io

