
Tonight’s Topic
Reliability and FMEA Keys to Software Quality

Adam Bahret; Owner & Lead Engineer of Apex Ridge Reliability Consulting Services
Abstract
Software reliability is an often little-understood but key part of software quality. Reliability
uses very different tool sets and practices. Understanding how the tools work and how they
affect the customer’s experience is a valuable lesson for software development, quality, and
application/maintenance specialists. Reliability expert Adam Bahret will provide an overview
and discussion of the following reliability techniques and tools that software quality
professionals need to know about:
• Software Failure Mode Effects Analysis (SFMEA)
• Process based software reliability prediction
• Overview of software reliability standards

Bio:
Adam Bahret is the founder of Apex Ridge Reliability Consulting Services. He is a mechanical
and electrical systems reliability expert with over 20 years of experience in product
development across many industries. He has worked extensively with reliability program
strategy, accelerated testing methods (HALT, HASS, QALT, and ALT), system reliability
measurement and improvement, FMEA, ALT, DOE, RG, predictive analysis, education
programs, and organizational culture and practices. He has specialized experience in the
medical field, robotics, consumer electronics and appliances, ion implantation, and diesel
systems. Adam has an MS in Mechanical Engineering from Northeastern University, is an ASQ
nationally certified reliability engineer, and is a senior member of IEEE. More information on
Adam and Apex Ridge Reliability can be found at www.apexridge.com.

provides tailored reliability solutions
 that advance our customer’s products in the market.

YOUR LEADER
IN RELIABILITY SOLUTIONS

.

Adam Bahret

Definition of Quality
“Quality assurance is a way of preventing mistakes and
defects in manufactured products and avoiding problems
when delivering products or services to customers”

Definition of Reliability

“The probability that an item will perform
its intended function under stated
conditions, for either a specified interval
or over its useful life.”

Definition of Dependability

• Availability
– Readiness of Service, how frequently it fails and how

quickly it can be repaired/restored/recovered

• Reliability
– Continuity of service,

how long does
system work w/o
system failure

Re
lia

bl
e

+
 A

va
ila

bl
e

Hardware Reliability has a simple mission

Mitigate the effects on performance from the variability of these three things

Manufactu
rin

g
Use

Environment

What is software reliability trying to control the variability of?

Variabilities that drive Software Reliability?

Manufacturing

1 32 4

Enviro
nment

Use

Mechanical & Electrical Reliability

8

Q
u

ality Failu
res

W
ea

r-
ou

t F
ai

lu
re

s

Stress Related Failures

I

Infant
Mortality

III

Wear-out

II

Useful Life

Overall Characteristic Life Curve

Failure Rate

Time
Product
Release End of useful life

Bathtub Curve

Software Reliability

9

Time

F
ai

lu
re

 R
at

e

I
Test

Debug

II
Useful Life

III
Obsolescence

There is no
motivation for further
upgrades or patches

Major Feature
upgrades increase

failure rate

Product
Release

Obsolescence

Regular patch releases
improve reliability

A few Strategies

• Instead of manufacturing can we predict reliability
for software with how it is developed?

• Processes
• Debugging
• Sourced code

Continuous Integration

Code Check-in
•Style Checks
•Lint – Static Code
Checks

•Compile – Report
Warnings / Errors

Unit Tests
•Module Level Test –
Pass/Fail

•Coverage
•Profiling – Report

Build
•Establish Version, Build
•Build Installer
•Backup Build Sources,
Bins, Installer

Simulate
•Test Installer
•Startup & Initialization
•Run Battery of Full
Integration Tests

If All Unit Test (Modules) pass...
1. Increment Build #
2. Annotate Source Control
3. Pull from SCM and Build
4. Includes Installer &

Documentation
5. Backup Everything if

Successful

Determine your criteria for Module
Passing
Metrics for Coverage are critical
Comparing Profiles (actual time per
test) can find code that passes but
execution time or memory footprint
changed too much

Determine your criteria for undo
check-in.
Keeping metrics will reward those
with clean check-ins

Simulation may be best performed on a
Virtual Machine

Virtual Box is free
Command the VM to restart from Last
version & Clean Install

Sourced Code

• Reliability When you have to rely on other people’s code
• Software Package Management Systems
• How do you know if a library has security vulnerabilities?

– The problems: Historically you search for libraries to build upon. How is it vetted.
They need to be vetted via open source.

• The Paradigm
– Npm pkgSafe (javaScript), NuGet, Open pkg, Pip (python)
– Every language platform has a community library management organization

• Self Policing, maintaining integrity,
• Manage Complex deep dependencies, secure dependency hierarchy all the way to the drivers.
• Prevents you from shipping
• It checks dependancies when you set your parameters

It will tell you how many vulnerabilities you
have and then go get the patches.
It will tell you how many vulnerabilities you
have and then go get the patches.

Using the Binaries

• Black Duck (When you don’t have access to source
code)

• Building on open source: It will look for
vulnerabilities in the binaries (compiled output)..

So even though the compiled libraries can’t be easily
viewed or might even be encrypted the binaries will

have identity data that can be evaluated

So even though the compiled libraries can’t be easily
viewed or might even be encrypted the binaries will

have identity data that can be evaluated

• Static Analsyis : Not running the code. Just analyzing
the source code.
– Static code analysis tool for Java, C, C++, and C#. It analyzes

every line of code and potential execution path and produces a
list of potential code defects

• Dynamic Analysis: Runs code and can find things like
memory run away. Does a memory fingerprint and then
a second memory fingerprint. (Profile in visual studio)
Is Memory runaway a type of wear-out?

Wear-out

• We belive it doesn’t happen in software.
• There is a version that does.

“Hi IT, I need help, my system is frozen.”
“Did you reboot it?”

Electro mechanical wearout

I

Infant
Mortality

III

Wear-out

II

Useful Life

Overall Characteristic Life Curve

Failure Rate

Time
Product
Release End of useful life

Bathtub Curve

Electro mechanical wearout

W
ea

r-
ou

t F
ai

lu
re

s

I

Infant
Mortality

III

Wear-out

II

Useful Life

Failure Rate

Time
Product
Release End of useful life

Bathtub Curve

Structural rust
based failuresTire

tread
wear

Electro mechanical wearout

W
ea

r-
ou

t F
ai

lu
re

s

I

Infant
Mortality

III

Wear-out

II

Useful Life

Failure Rate

Time
Product
Release End of useful life

Bathtub Curve

Structural rust
based failuresTire

tread
wear

Preventative
Maintenance
(PM)

Electro mechanical wearout

W
ea

r-
ou

t F
ai

lu
re

s

I

Infant
Mortality

III

Wear-out

II

Useful Life

Failure Rate

Time
Product
Release End of useful life

Bathtub Curve

Structural rust
based failuresTire tread

wear

Preventative
Maintenance
(PM)

Electro mechanical wearout

W
ea

r-
ou

t F
ai

lu
re

s

I

Infant
Mortality

III

Wear-out

II

Useful Life

Failure Rate

Time
Product
Release End of useful life

Bathtub Curve

Structural rust
based failuresTire tread

wear

Preventative
Maintenance
(PM)

Can software
have age related

bugs?

Can software
have age related

bugs?

What does it cost our customers?

Six hours per year

One hour per year

Hey Friend! Hey Friend!

Aging-related bug := A fault that leads to the accumulation of errors
either inside the running application or in its system-context

environment, resulting in an increased failure rate and/or degraded
performance.

Example:
 A bug causing memory leaks in the application
 Note that the aging phenomenon requires a delay

between (first) fault activation and failure occurrence.
 Note also that the software appears to age due to

such a bug; there is no physical deterioration

22

Aging-related Bug – Definition

Short term Wearout

Long term Wearout

Memory Leak
New hardware
Incompatibility

Mandelbug

Mandelbug:= A fault whose activation and/or error propagation are complex.
Typically, a Mandelbug is difficult to isolate, and/or the failures caused by a it are
not systematically reproducible.

Example: A bug whose activation is scheduling-dependent:
 The residual faults in a thoroughly-tested piece of software are mainly Mandelbugs.

24

Mandelbug Complexity Factors

25

 Long time lag between fault activation and failure
appearance

 Operating environment (OS resources, other applications
running concurrently, hardware, network…)

 Timing among submitted operations
 Sequencing or ordering of operations

A failure due to a Mandelbug may not show up
upon the resubmission of a workload if the
operating environment has changed enough.

Enviro
nment

On environment: Code in protection for the things you can’t
control in the external environment. This could be hardweare,
usb drive pulled
File gets locked as you are saving it. Maybe an antivirus grabs
it and then it’s locked.

That sounds a lot like variability
of environment

That sounds a lot like variability
of environment

• Traditional testing tends to be ineffective for Mandelbugs;
more suitable verification strategies are
– Code reviews
– Model checking
– Combinatorial testing

Bohrbug:= A fault that is easily isolated and that manifests
consistently under a well-defined set of conditions, because its

activation and error propagation lack complexity.

Example: A bug causing a failure whenever the user enters a negative
date of birth

 Since they are easily found, Bohrbugs may be detected and fixed
during the software testing phase.

Bohrbug

27

Dealing with Bohrbugs-Mandelbugs
• Depending on the type, appropriate strategies are needed
• Traditional testing tends to be ineffective for Mandelbugs;

more suitable verification strategies are
– Code reviews
– Model checking
– Combinatorial testing
– …

• Failures caused by Mandelbugs can be tolerated by
– Retrying a failed operation
– Restarting a process
– Failover to an identical replica
– Rejuvenation ”Did you restart your computer first?”
– ...

28

Design for Reliability (Mandelbug strategy)

• Single Thread vs multi thread is a design pattern strategy
(assist with Mandelbug)

• One mandelbug is deadlock from multithread

• Software Design Patterns
– Design patterns are used to represent some of the best practices

adapted by experienced object-oriented software developers. A
design pattern systematically names, motivates, and explains a
general design that addresses a recurring design problem in object-
oriented systems. It describes the problem, the solution, when to
apply the solution, and its consequences.

Made by the team

Manufacturing

1 32 4

High Performance Development Teams

Coding
Standards Tech Talks

Platform
Architectu

re
Metrics Infrastruct

ure

Knowledg
e

Managem
ent

• Identify the developer types
– Architects, Early Adopters, Teachers, Testers
– Pragmatists, Sufficient Coders, Algorithm Creators
– Strict Coders, Troubleshooters, Process Followers

• What roles do you put them in?
• What teams / functions do you need?
• How do you get the right person to the right team

AI

How do we know bad code when we see it?

Can you teach AI to look at
code and know bad code
from good code?

All three variables are there

Manufacturing

1 32 4

Enviro
nment

Use

Dev ops

• DevOps is a set of practices that combines
software Development (Dev) and information-
technology Operations (Ops) which aims to
shorten the systems development life cycle and
provide Continuous delivery with high software
quality

	Tonight’s Topic
	Slide 2
	Definition of Quality
	Definition of Reliability
	Definition of Dependability
	Hardware Reliability has a simple mission
	Variabilities that drive Software Reliability?
	Mechanical & Electrical Reliability
	Software Reliability
	A few Strategies
	Continuous Integration
	Sourced Code
	Using the Binaries
	Slide 14
	Wear-out
	Electro mechanical wearout
	Electro mechanical wearout
	Electro mechanical wearout
	Electro mechanical wearout
	Electro mechanical wearout
	What does it cost our customers?
	Slide 22
	Slide 23
	Slide 24
	Mandelbug Complexity Factors
	Slide 26
	Slide 27
	Dealing with Bohrbugs-Mandelbugs
	Design for Reliability (Mandelbug strategy)
	Slide 30
	High Performance Development Teams
	AI
	All three variables are there
	Dev ops
	Slide 35

