

Avoiding regressions in an agile
development environment

At Yottaa

Speaker Intro

 Studied Computer Science at Helsinki University

 Previously, Consulting Engineer at DEC

– Developed middleware for OLTP systems
 Founder of Automature

– built tools for making QA more transparent
 Currently a senior member of Quality Engineering team at Yottaa

Topics

 What does Yottaa do?
 The quality scene at Yottaa
 Tools used for automation at Yottaa
 The quality process in action...
 How tests are executed, metrics gathered, and

reported
 A quick walk-through of the management portal UI test

automation
 Questions

What Yottaa does...

eCommerce Acceleration platform

Enables online retailers significantly improve website performance

 Customers are well known eCommerce sites worldwide

 No code modifications required for customer sites!

 Sites are optimized by choosing a set of optimization policies/rules

 Traffic optimized in-transit through techniques including

 Caching, Image optimizing, HTML rewriting, In-lining, Compression

 All traffic is routed through Yottaa's “data-centers”

 An average of 30% reduction in page load times is achieved

 Significant boosts in “conversion rates”

The software scene at Yottaa

 Production is a SaaS environment

 Distributed Linux based architecture, consisting of

 Management Portal (Ruby)
 Load balancers (Java, C)
 Traffic optimizers (Java)
 Change broadcasters (Java, GoLang)
 Traffic analytics (Java)

 Build & deployment uses Ant, Groovy & Jenkins CI

 SW repositories on private GitHub

 Puppet used for deployment

QA Automation Tools

 All tests are automated...

 Regression Tests are executed as Jenkins jobs, kicked off
after components have been deployed in CI environment

 Automation has been developed using

– Java for unit tests

– Python for web-services testing

– Automature's Test Generator for UI (Selenium) tests

– Ruby for Analytics testing

 Automated Tests run as Jenkins jobs, using Python,
Ruby, Spark runtime environments

 Test Results are uploaded to Zermatt using Jenkins
plugins

Some Terminology

 What is a Test Plan?

– A Collection of Test Cases, bound by a common theme,
serving a specified purpose, targeted at a specific Topology
Set

 What is a Topology Set?

– A collection of machines (physical or virtual) that mimic a
deployment environment

 What is a Test Cycle?

– An instance of execution of a Test Plan on target topology
sets

Reporting using Jenkins Plugins

 Results of test cases/test suites executed, organized
by
 topology sets
 date/time
 release/sprint/build/plan

 Code coverage by test plan (or collection of plans)

 Build Quality Index Computation (scale 1-10, lowest is 1)

 Function of tests passing & coverage achieved

Jenkins Plugin for Reporting Results

Jenkins Coverage Reporting Plugin

 Unit & Integration Tests are executed as Jenkins jobs

 Test results are written in XML (using Xunit schema)

 Automature's Jenkins Plugin uploads results to Zermatt,
provides contextual information (which build, where &
when executed)

 Zermatt provides many pre-built configurable custom
charts, called gadgets, for displaying quality metrics

 Multiple Gadgets are combined into Wallboards

 Multiple wallboards are sequenced into a movie show

Displaying QA Results & Metrics

Creating a gadget

The Events List Gadget

The Coverage Rankings Gadget

Wallboard for Build Quality Index

Wallboards for Regression Results, Code
Coverage (by Testplan)

 Web UI to manage the Yottaa Universe

 Provision & manage Yottaa's network SaaS infrastructure

– 5 worldwide data centers (Asia, Europe & Americas)

– multi-layer routing for load balancing & optimization
 Configure client sites

– fine-tune content optimization strategies & rules

– manage cache
 Monitor performance

 Developed using Ruby-on-Rails

A quick walk-through of the
management portal UI test automation

 Automature's Basel Web Testing Framework
 Interactive test generator for Automature's Spark

– Two phase approach

• Phase 1: Generate Page Objects for web elements

• Phase 2: Create Test Cases

– sequence of steps to manipulate web elements
 What are Page Codes?

– JSON objects, that uniquely identify web elements by name

– May also describe a meta-element, e.g.

• A grid structure, or

• A sequence dependency,

– e.g. grid remains hidden, until check-box is selected,
making the frame interactable

How are test cases created?

What do test cases look like?

A Test Case

A Molecule

How are test cases executed?

 Through the command line

 Through Jenkins shell executor (Mac, Linux or Windows)

 Through Spark's Graphical Execution Environment/Debugger

How are test cases debugged?

Breakpoint

Teststep expander

Testcase name

Run

How do test case execution logs look like?

What a test execution report looks like?

What a test plan looks like?

What a test cycle report looks like?

How gadget instances are created?

Wallboards are created by choosing gadgets

Thank You!

Questions?

