

Avoiding regressions in an agile
development environment

At Yottaa

Speaker Intro

 Studied Computer Science at Helsinki University

 Previously, Consulting Engineer at DEC

– Developed middleware for OLTP systems
 Founder of Automature

– built tools for making QA more transparent
 Currently a senior member of Quality Engineering team at Yottaa

Topics

 What does Yottaa do?
 The quality scene at Yottaa
 Tools used for automation at Yottaa
 The quality process in action...
 How tests are executed, metrics gathered, and

reported
 A quick walk-through of the management portal UI test

automation
 Questions

What Yottaa does...

eCommerce Acceleration platform

Enables online retailers significantly improve website performance

 Customers are well known eCommerce sites worldwide

 No code modifications required for customer sites!

 Sites are optimized by choosing a set of optimization policies/rules

 Traffic optimized in-transit through techniques including

 Caching, Image optimizing, HTML rewriting, In-lining, Compression

 All traffic is routed through Yottaa's “data-centers”

 An average of 30% reduction in page load times is achieved

 Significant boosts in “conversion rates”

The software scene at Yottaa

 Production is a SaaS environment

 Distributed Linux based architecture, consisting of

 Management Portal (Ruby)
 Load balancers (Java, C)
 Traffic optimizers (Java)
 Change broadcasters (Java, GoLang)
 Traffic analytics (Java)

 Build & deployment uses Ant, Groovy & Jenkins CI

 SW repositories on private GitHub

 Puppet used for deployment

QA Automation Tools

 All tests are automated...

 Regression Tests are executed as Jenkins jobs, kicked off
after components have been deployed in CI environment

 Automation has been developed using

– Java for unit tests

– Python for web-services testing

– Automature's Test Generator for UI (Selenium) tests

– Ruby for Analytics testing

 Automated Tests run as Jenkins jobs, using Python,
Ruby, Spark runtime environments

 Test Results are uploaded to Zermatt using Jenkins
plugins

Some Terminology

 What is a Test Plan?

– A Collection of Test Cases, bound by a common theme,
serving a specified purpose, targeted at a specific Topology
Set

 What is a Topology Set?

– A collection of machines (physical or virtual) that mimic a
deployment environment

 What is a Test Cycle?

– An instance of execution of a Test Plan on target topology
sets

Reporting using Jenkins Plugins

 Results of test cases/test suites executed, organized
by
 topology sets
 date/time
 release/sprint/build/plan

 Code coverage by test plan (or collection of plans)

 Build Quality Index Computation (scale 1-10, lowest is 1)

 Function of tests passing & coverage achieved

Jenkins Plugin for Reporting Results

Jenkins Coverage Reporting Plugin

 Unit & Integration Tests are executed as Jenkins jobs

 Test results are written in XML (using Xunit schema)

 Automature's Jenkins Plugin uploads results to Zermatt,
provides contextual information (which build, where &
when executed)

 Zermatt provides many pre-built configurable custom
charts, called gadgets, for displaying quality metrics

 Multiple Gadgets are combined into Wallboards

 Multiple wallboards are sequenced into a movie show

Displaying QA Results & Metrics

Creating a gadget

The Events List Gadget

The Coverage Rankings Gadget

Wallboard for Build Quality Index

Wallboards for Regression Results, Code
Coverage (by Testplan)

 Web UI to manage the Yottaa Universe

 Provision & manage Yottaa's network SaaS infrastructure

– 5 worldwide data centers (Asia, Europe & Americas)

– multi-layer routing for load balancing & optimization
 Configure client sites

– fine-tune content optimization strategies & rules

– manage cache
 Monitor performance

 Developed using Ruby-on-Rails

A quick walk-through of the
management portal UI test automation

 Automature's Basel Web Testing Framework
 Interactive test generator for Automature's Spark

– Two phase approach

• Phase 1: Generate Page Objects for web elements

• Phase 2: Create Test Cases

– sequence of steps to manipulate web elements
 What are Page Codes?

– JSON objects, that uniquely identify web elements by name

– May also describe a meta-element, e.g.

• A grid structure, or

• A sequence dependency,

– e.g. grid remains hidden, until check-box is selected,
making the frame interactable

How are test cases created?

What do test cases look like?

A Test Case

A Molecule

How are test cases executed?

 Through the command line

 Through Jenkins shell executor (Mac, Linux or Windows)

 Through Spark's Graphical Execution Environment/Debugger

How are test cases debugged?

Breakpoint

Teststep expander

Testcase name

Run

How do test case execution logs look like?

What a test execution report looks like?

What a test plan looks like?

What a test cycle report looks like?

How gadget instances are created?

Wallboards are created by choosing gadgets

Thank You!

Questions?

