
Test Case Management
Systems and Metadata

David Marston

Stakeholders

Testing

Committee
Spec-­‐Writing
Committee

Specs

Consortium

Vendor
Implementing
The	
 Specs

Test	
 Lab

Specs

Independent
Test	
 Lab

Test	
 Case
Contributors

Tests

End-­‐User
(Customer	
 of
Implementer)

Test	
 Lab

PO?

Reports

Product
Including
Subject
Of	
 Tests

Su
ite

Te
st
	
 S
ui
te

Note: errata and other
feedback not shown

Vendor may
implement the specs
directly, implement
producer software,

implement consumer
software, or embed a

third-party
implementation

Scope and Scale
l  There are written requirements that can be cited

(“the specs”)
l  5000 to 100,000 test cases
l  There is some form of database or catalog

record for every test case, which is where we put
the metadata

l  Atomic tests, exercising highly specific bits of
behavior

l  May need inputs when running tests

Functions of Metadata
l  Tracking test cases during the development and

review process
l  Filtering test cases according to a variety of criteria

(for example, whether or not they are applicable for
a particular profile or optional feature)

l  Identifying the area of the specification that is tested
by each test case

l  Parts are extracted when constructing a script to
automatically execute the tests

l  Formatting test results so that they are easily
understood

l  Providing data for some fields of a bug report

Example Metadata in XML
<test-case name="axes001-1">
 <description>Try child::* where several children exist</description>
 <file-path>axes</file-path>
 <spec-citation type="section" place="3.2.1.1" version="1.0"

spec="xquery"/>
 <spec-citation type="anchor" place="axes" version="1.0"

spec="xquery"/>
 <scenario operation="standard">
 <input-file role="query">axes001.xq</input-file>
 <input-file role="principal-data">TreeMany.xml</input-file>
 <output-file role="principal" compare="XML">axes001-1.xml</output-

file>
 </scenario>
</test-case>

If we have a standard for this data, it would encourage

vendors of test automation to use it, making their product
more flexible.

Metadata Technology at work
l  We use XML so it can be transformed for many purposes
l  Distinguishes each test case from all the others, which aids in bug

isolation
l  Testing Scenarios (setup, running test, comparing results, cleanup)
l  Distinguishes prerequisites, pre-conditions, and input artifacts
l  Could even be the only place where all the necessary artifacts are

referenced at once
l  All Dimensions of Variability accommodated
l  Versions filtered by VersionAdd and VersionDrop
l  Can even filter for errata on external specifications, if they are

systematic
l  Can embed status of each test case
l  Directory of materials in a filesystem tree
l  Contains pieces of text that can be assembled into scripts

Even the simplest metadata
requires thoughtful design

l  Identifier: short, unique key string
l  Title: unique, understandable by humans
l  Purpose: one-liner (ideally, unique)
l  Description: Detailed Explanation
Above are from W3C’s 2005 QA Working Group

Note on Test Metadata

Operational Scenarios

Set	
 up
Pre-­‐conditions

Execute
Test

Compare
Actual	
 and
Expected

Console

Image

Text

Outcome

Cleanup

Report

Bug
Data

Fail

“Result” vs. “Outcome”
l  Result is produced by the item under test
l  Outcome is obtained by comparing the

actual and reference results with the correct
comparitor (could be separate open-source
tools or tool-vendor opportunity)

l  Outcomes are from an enumerated list:
pass, fail, NA, couldn’t run, etc.

What About Prerequisites?
Should test case metadata identify other test cases as

prerequisites?
l  One extreme: every test contains everything it needs to

run in isolation
l  Other extreme: test case Y literally depends on test

case X to run, and to leave something behind
l  Middle: metadata or test assertions tell that if X fails,

there is no point in even attempting to run Y

Specification Cycle
l  Raw
l  Internal draft (exposure determined by

Consortium policy)
l  Published drafts
l  Formal RFC stage(s)
l  Passed
l  Errata – raw
l  Errata draft
l  Errata - passed

Lifecycle of a Test Case
 Testing	
 CommitteeContributor Other	
 Stakeholders Spec-­‐Writing

Committee

Write	
 and
Submit

Submitted;
Pending	
 First	

Review

Remanded	
 for	
 Revision
Or	
 Rejected

Later
ReviewsResubmit

Accepted	

and

Available

Challenged
More	
 Errata	

or	
 New	

Version	
 of	

Spec

Changes	
 Impact	
 Some	
 Test	
 Cases

Revise
Test	
 Case
Metadata

Specific Data Items

(A selected set, plus your
requested topics)

Do you rank Test Cases?
l  “Priority” or “Importance” is a way to represent

how early or how often you run a particular test
case

l  Could be indirect, by using tests in various suites
(smoke test suite is early/high)

l  How fine-grained is your scale?

Versions of the software
l  Typically pseudo-numeric
l  Want to avoid a whole new set of test materials for each version,

despite new specs
l  VersionAdd: lowest-numbered version to which the case applies
l  VersionDrop: lowest-numbered version to which the case does not

apply (if not specified, applies to the latest version)
l  If no VersionAdd, applies from 1.0.0 onward
l  Test cases can also have versions (or the input assets could)
l  When there is concern for backward compatibility, tests usually

apply over a range of versions
l  Some test materials apply specifically to backward compatibility,

forward compatibility, or deprecation

Dimensions of Variability - Overview

l  There are 7 ways that a spec may permit
variances in implementations

l  Not about versioning! Every version can have
DoV of its own

l  Versions can be accounted for in the test case
metadata by VersionAdd/VersionDrop

l  Some DoV constrain others; they are not all
orthogonal

l  Well-written specs have explicit recognition of
every DoV used

Dimensions of Variability Enumerated

l  Class of Product
l  Profile
l  Module
l  Level
l  Discretionary Item
l  Deprecation
l  Extensibility
(Last slide has a link for the whole document)

Metadata Using DoV
l  A single test case may have metadata that says it only applies:

l  To a certain level or higher
l  When a particular module is present
l  When a particular module is absent
l  By capturing the specific choice that the implementer made on

some parameter, then parameterizing the test case with that
value

l  The test case metadata should specify the comparitor needed for
each case, and other details of the scenario, which could be
influenced by profile or level (for degree of exactitude)

l  XQuery metadata had to specify the initial state of the document
and the values of any variables, yet implementations could
accomplish the setup in different ways – the test case itself would
not be portable if it tried to do the setup!

Deprecation
l  Deprecated features work (contrast to obsolete)
l  Ideally, there is a better way to do it, rather than it being a capability

you will lose in the future
l  Products that are producers of the material-under-test should

change to the replacement technology as soon as they can
l  Warnings may be appropriate
l  Test Cases can be deprecated separately from the technology

l  Test Case that is current tests that deprecated feature still
works (and issues warning, if specified)

l  Test Case is deprecated because there is now a better way
to test a current/ongoing feature

l  Test Case uses the deprecated feature in its testing of
some other feature

Test Assertions
l  More-or-less atomic statements of behavior, possibly with qualifiers
l  Several past attempts; OASIS defined predicate-style TAs whose

truth value can be measured
l  Good way to check that the spec is suitably precise, and may also

help in coverage analysis
l  May help when distributing the burden of writing test cases
l  Facilitates test-driven development
l  Through dependencies and contingencies, TAs could be cascaded

or used in resolving root causes of problems
l  Not just for conformance!

Test Suite Contents
l  The test case metadata defines the test cases
l  Keys to the metadata: allowable values for scenario, profile/module

names, comparitor names, etc.
l  Definitions of testing scenarios
l  Inputs for the cases
l  Reference outputs (correct results)
l  Specifications (at least) for running tests and comparing results –

harness requirements
l  Protocol tests may need a server
l  An executable test suite is built by the Test Lab to account for

platform differences
l  The Test Lab should be able to check out later versions of the

materials from the issuing body

Bonus Material
David_Marston@pegasystems.com

Conformance Principles
l  Passing all the provided conformance tests (that are relevant) does not

prove conformance
l  Failing any relevant test proves non-conformance
l  The "correct" result provided must be compared to actual results with a

proper comparitor
l  "Result" vs. "Outcome" (Pass, Fail, NA, etc.)
l  Each specification should have a conformance clause
l  Conformance testing can be platform-neutral and reproducible
l  Conformance claims can be analyzed against a standard for well-formed

conformance claims
l  Who did the testing and when
l  Versioning info on the product under test
l  Versioning info on the test materials
l  Open and verifiable test harness

l  Test Lab disclaims official status unless the SDO has stated that they
support certification and the lab has been authorized by the SDO to issue
certifications

Compound Constraints
l  A specification can have a compound sentence that, as a single

sentence, spawns a "cross product" of its provisions. Here's an
example from Section 3.7 of XPath 1: "If	
 the	
 character	

following	
 an	
 NCName	
 (possibly	
 after	
 intervening	

ExprWhitespace)	
 is	
 (,	
 then	
 the	
 token	
 must	
 be	
 recognized	

as	
 a	
 NodeType	
 or	
 a	
 FunctionName."	

l  This yields four explicit cases:
l  NCName which is a NodeType - no space - (
l  NCName which is a NodeType - white space - (
l  NCName which is a function - no space - (
l  NCName which is a function - white space - (

l  and implies two negative cases:
l  NCName which is neither - no space - (
l  NCName which is neither - white space - (

l  Both of the negative cases should raise an error like "unknown
function.“

l  But it gets worse, because NodeType actually allows 4 words.

Errata
l  Formal specification documents, such as standards, have errata

l  Formally published
l  Have their own lifecycle
l  Sequentially numbered, citable
l  Newer one can override older one

l  Test cases can have errors, but usually we just check in an
improved version

l  Test case metadata should indicate recognition of relevant
specification errata

Cross-version Compatibility
l  Backward Compatibility: software is a higher

version than the data/scripts
l  Forward Compatibility: software is a lower

version, attempting to do the best it can with
data/scripts intended for a higher version

Construct a DOS/Windows BATch
file from XML Metadata

<xsl:template match="/">
 <xsl:text>@ECHO OFF
</xsl:text>
 <!-- Resulting batch file takes an argument to specify where output goes

-->
 <xsl:text>set OUTDIR=\results\xalan\%1
</xsl:text>
 <!-- Whatever else goes at the top of the batch file -->
 <xsl:apply-templates select="test-suite/test-catalog/test-case"/>
 <xsl:text>ECHO Done!
</xsl:text>
 <!-- Whatever else goes at the bottom of the batch file -->
</xsl:template>

<!–- Below this point is an xsl:template for test-case -->
<!–- There could be different templates for each testing
 scenario, like test-case[scenario/@operation="negative"] -->

To Go Deeper
l  W3C discussion: http://www.w3.org/wiki/TestCaseMetadata
l  W3C QAWG Note on Test Metadata:
 http://www.w3.org/TR/2005/NOTE-test-metadata-20050914/
l  Variability in Specifications:
 http://www.w3.org/TR/2005/NOTE-spec-variability-20050831/
l  XML Namespaces:

l  http://www.ibm.com/developerworks/library/x-nmspace.html
l  http://www.ibm.com/developerworks/library/x-nmspace2.html

l  XQuery Test Suite (includes guides to use and contribute):
http://dev.w3.org/2011/QT3-test-suite/

l  OASIS Test Assertions TC
 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tag

