

	Case A High quality	Case B Low quality
Defects found	50	500
Test case creation	\$10,000	\$10,000
Test case execution	\$10,000	\$10,000
Defect repairs	\$10,000	\$70,000
TOTAL	\$30,000	\$90,000
Cost per Defect	\$600	\$180
\$ Cost savings	\$60,000	\$0.00

	Case A	Case B
	JAVA	С
KLOC	50	125
Function points	1,000	1,000
Code defects found	500	1,250
Defects per KLOC	10.00	10.00
Defects per FP	0.5	1.25
Defect repairs	\$70,000	\$175,000
\$ per KLOC	\$1,400	\$1,400
\$ per Defect	\$140	\$140
\$ per Function Point	\$70	\$175
\$ cost savings	\$105,000	\$0.00

U.S. AVERAGES FOR SOFTWARE QUALITY

Defect Origins	Defect Potential	Removal Efficiency	Delivered Defects
Requirements	1.00	77%	0.23
Design	1.25	85%	0.19
Coding	1.75	95%	0.09
Documents	0.60	80%	0.12
Bad Fixes	<u>0.40</u>	<u>70%</u>	<u>0.12</u>
TOTAL	5.00	85%	0.75
(Function points sh	ow all defect sou	rces - not just co	ding defects)

(Data express	sed in terms of d	efects per functio	on point)
Defect Origins	Defect Potential	Removal Efficiency	Delivered Defects
Requirements	0.40	85%	0.08
Design	0.60	97%	0.02
Coding	1.00	99%	0.01
Documents	0.40	98%	0.01
Bad Fixes	<u>0.10</u>	<u>95%</u>	<u>0.01</u>
TOTAL	2.50	96%	0.13
BSERVATIONS			
lost often found in systems	software > SEI C	MM Level 3 or in	TSP projects)

Defect Origins	Potential	Efficiency	Denvereu
		Linclency	<u>Defects</u>
Requirements	1.50	50%	0.75
Design	2.20	50%	1.10
Coding	2.50	80%	0.50
Documents	1.00	70%	0.30
Bad Fixes	<u>0.80</u>	<u>50%</u>	<u>0.40</u>
TOTAL	8.00	62%	3.05
IGIAE	0.00	0270	0.00

GOOD QUALITY RESULTS > 90% SUCCESS RATE

- Formal Inspections (Requirements, Design, and Code)
- Text static analysis
- · Code static analysis (for about 25 languages out of 2,500 in all)
- Joint Application Design (JAD)
- Requirements modeling
- · Functional quality metrics using function points
- Structural quality metrics such as cyclomatic complexity
- Defect Detection Efficiency (DDE) measurements
- Defect Removal Efficiency (DRE) measurements
- · Automated defect tracking tools
- Active quality Assurance (> 3% SQA staff)
- · Mathematical test case design based on design of experiments
- Quality estimation tools
- Testing specialists (certified)
- Root-Cause Analysis

Copyright © 2012 by Capers Jones. All Rights Reserved.

Copyright © 2012 by Capers Jones. All Rights Reserved.

MIXED QUALITY RESULTS: < 50% SUCCESS RATE
CMMI level 3 or higher (some overlap among CMMI levels: Best CMMI 1 groups better than worst CMMI 3 groups)
ISO and IEEE quality standards (Prevent low quality; Little benefit for high-quality teams)
Six-Sigma methods (unless tailored for software projects)
Quality function deployment (QFD)
Independent Verification & Validation (IV & V)
Quality circles in the United States (more success in Japan)
Clean-room methods for rapidly changing requirements
Kaizan (moving from Japan to U.S. and elsewhere)
Cost of quality without software modifications
Pair programming

SWQUAL08\14

SWQUAL08\13

Sovarity 1:		1% at roloaso
Seventy 1.	TOTAL FAILURE 5	1% at release
Severity 2:	MAJOR PROBLEMS	20% at release
Severity 3:	MINOR PROBLEMS	35% at release
Severity 4:	COSMETIC ERRORS	44% at release
STRUCTURAL	MULTI-TIER DEFECTS	15% of reports
INVALIDUSER	OR SYSTEM ERRORS 15% (of reports
DUPLICATE	MULTIPLE REPORTS	30% of reports
ABEYANT	CAN' T RECREATE ERROR	5% of reports

	(Defects per Function Point)					
	System Software	Commercial Software	Information Software	Military Software	Outsource Software	
Defect Potentials	6.0	5.0	4.5	7.0	5.2	
Defect Removal Efficiency	94%	90%	73%	96%	92%	
Delivered Defects	0.36	0.50	1.22	0.28	0.42	
First Year Discovery Rate	65%	70%	30%	75%	60%	
First Year Reported Defects	0.23	0.35	0.36	0.21	0.25	

	(De	efects per Fur	ction Point)		
	Web Software	Embedded Software	SEI-CMM 3 Software	SEI-CMM 1 Software	Overall Average
Defect Potentials	4.0	5.5	5.0	5 75	51
Fotentials	4.0	5.5	5.0	5.75	5.1
Defect Removal Efficiency	72%	95%	95%	83%	86.7%
Delivered					
Defects	1.12	0.3	0.25	0.90	0.68
First Year					
Discovery Rate	95%	90%	60%	35%	64.4%
First Year					
Reported	1.06	0.25	0.15	0.34	0.42
Defects					

(Data Expressed in terms of Defects per Function Point)						
Size	Defect Potential	Defect Removal Efficiency	Delivered Defects	1st Year Discovery Rate	1st Year Reported Defects	
1	1.85	95.00%	0.09	90.00%	0.08	
10	2.45	92.00%	0.20	80.00%	0.16	
100	3.68	90.00%	0.37	70.00%	0.26	
1000	5.00	85.00%	0.75	50.00%	0.38	
10000	7.60	78.00%	1.67	40.00%	0.67	
100000	9.55	75.00%	2.39	30.00%	0.72	
VERAGE	5.02	85.83%	0.91	60.00%	0.38	

SOFTWARE DEFECT POTENTIALS AND DEFECT REMOVAL EFFICIENCY FOR EACH LEVEL OF SEI CMM

EI CMM Levels	Defect Potentials	Removal Efficiency	Delivered Defects
SEI CMMI 1	5.25	80%	1.05
SEI CMMI 2	5.00	85%	0.75
SEI CMMI 3	4.75	90%	0.48
SEI CMMI 4	4.50	93%	0.32
SEI CMMI 5	4.25	96%	0.17

(Data Expressed in Terms of Defects per Function Point

SOFTWARE DEFECT POTENTIALS AND DEFECT REMOVAL EFFICIENCY FOR EACH LEVEL OF SEI CMM

(Data Expressed in Terms of Defects per Function Point For projects <u>10,000</u> function points in size)

SEI CMM Levels	Defect Potentials	Removal Efficiency	Delivered Defects
SEI CMMI 1	6.50	75%	1.63
SEI CMMI 2	6.25	82%	1.13
SEI CMMI 3	5.50	87%	0.71
SEI CMMI 4	5.25	90%	0.53
SEI CMMI 5	4.75	94%	0.29
Copyright © 2012 by Capers Jones. All Rights Reserved.			SWQUAL08\2

	Defect	Removal	Delivered
Software methods	Potential	Efficiency	Defects
Waterfall		5.50	80%
1.10			
Iterative	4.75	87%	0.62
Object-Oriented	4.50	88%	0.54
Agile with scrum	4.00	90%	0.40
Rational Unified Process (RUP)	4.25	94%	0.26
PSP and TSP	3.50	96%	0.14
Model-based	3.00	98%	0.06
85% Certified reuse	1.75	99%	0.02

DEFECTS AND SOFTWARE METHODOLGOIES

(Data Expressed in Terms of Defects per Function Point For projects nominally <u>10,000</u> function points in size)				
	Defect	Removal	Delivered	
Software methods	Potential	Efficiency	Defects	
Waterfall	7.00	75%	1.75	
Iterative	6.25	82%	1.13	
Object-Oriented	5.75	85%	0.86	
Agile with scrum	5.50	87%	0.72	
Rational Unified Process (RUP)	5.50	90%	0.55	
PSP and TSP	5.00	94%	0.30	
Model-based	4.00	96%	0.15	
85% Certified reuse	2.25	96%	0.09	

Country	Defect Potential	Removal Efficiency	Delivered Defects
-		-	
Japan	4.50	93.50%	0.29
India	4.90	93.00%	0.34
Denmark	4.80	92.00%	0.38
Canada	4.75	91.75%	0.39
South Korea	4.90	92.00%	0.39
Switzerland	5.00	92.00%	0.40
United Kingdom	5.10	91.50%	0.40
Israel	5.10	92.00%	0.41

Data Expressed in Terms of Defects per Function Point

Data Expressed in Terms of Defects per Function Point Selected Countries out of 66 compared				
Country	Defect Potential	Removal Efficiency	Delivered Defects	
United States	4.82	90.15%	0.47	
France	4.85	90.00%	0.49	
Germany	4.95	88.00%	0.59	
Italy	4.95	87.50%	0.62	
Spain	4.90	86.50%	0.66	
Russia	5.15	86.50%	0.70	
China	5.20	86.50%	0.70	
Ukraine	4.95	85.00%	0.74	

DEFECT REMOVAL EFFICIENCY	CASE 1
Inspections + static analysis	s + testing
DEVELOPMENT DEFECTS F	REMOVED
Static analysis	350
Inspections	390
Testing	250
Subtotal	990
USER-REPORTED DEFECTS	S IN FIRST 90 DAYS
Valid unique defects	10
TOTAL DEFECT VOLUME	
Defect totals	1,000
DEFECT REMOVAL EFFICIE Dev. (990) / Total (1,000)	NCY = 99.0%

Inspections + static an	alysis + testing
Static analysis	\$12,772
Inspections	\$70,773
Testing	\$220,889
Subtotal	\$304,434
Maintenance	\$6,629
TOTAL	\$310,703 (lowest cost)

DEFECT REMOVAL EFFICIENCY CAS	E 2	
No static analysis. Inspections +	testing	
DEVELOPMENT DEFECTS REMO	/ED	
Static analysis	0	
Inspections	560	
Testing	400	
Subtotal	960	
USER-REPORTED DEFECTS IN FI	RST 90 DAYS	
Valid unique defects	40	
TOTAL DEFECT VOLUME		
Defect totals	1,000	
DEFECT REMOVAL EFFICIENCY Dev. (960) / Total (1,000) =	96.0%	
Copyright © 2012 by Capers Jones. All Rights Reserved.		SWQUAL08\3

No static analysis. ins	spections + testing
Static analysis	\$0
Inspections	\$91,387
Testing	\$230,203
Subtotal	\$321,590
Maintenance	\$13,932
TOTAL	\$335,522

Г

DEFECT REMOVAL EFFICIENCY (CASE 3	
No inspections. Static analysis +	· testing	
DEVELOPMENT DEFECTS REMO	VED	
Static analysis	500	
Inspections	0	
Testing	425	
Subtotal	925	
USER-REPORTED DEFECTS IN F	IRST 90 DAYS	
Valid unique defects	75	
TOTAL DEFECT VOLUME		
Defect totals	1,000	
DEFECT REMOVAL EFFICIENCY Dev. (925) / Total (1,000) =	92.5%	
Copyright © 2012 by Capers Jones. All Rights Reserved.		SWQUAL08\

No inspections; static	analysis + testing
Static analysis	\$12,772
Inspections	\$0
Testing	\$264,045
Subtotal	\$276,817
Maintenance	\$41,796
TOTAL	\$318,613

DEFECT REMOVAL EFFICIENCY CAS	SE 4	
No inspections; no static analysis	s. Testing only.	
DEVELOPMENT DEFECTS REMO	VED	
Inspections	0	
Static analysis	0	
Testing	850	
Subtotal	850	
USER-REPORTED DEFECTS IN F	IRST 90 DAYS	
Valid unique defects	150	
TOTAL DEFECT VOLUME		
Defect totals	1,000	
DEFECT REMOVAL EFFICIENCY	/	
Dev. (850) / Total (1,000) =	85.0%	

Inspections + static an	alysis + testing
Static analysis	\$0
Inspections	\$0
Testing	\$326,089
Subtotal	\$326,089
Maintenance	\$92,879
TOTAL	\$418,968 (Highest cost)

	Removal	Repairs	Total
Case 1	\$304,434	\$6,289	\$310,703 Best
Case 2	\$321,590	\$13,932	\$335,522
Case 3	\$276,817	\$41,796	\$318,613
Case 4	\$326,089	\$92,879	\$418,698 Worst

	Efficiency	Removed	Delive	ered
Case 1	99.0%	990	10	Best
Case 2	96.0%	940	40	
Case 3	92.5%	925	75	
Case 4	85.0%	850	150	Worst

Г

Because defect removal is defect origins is a valuable	ch a major cost element, studying dertaking.
IBM Corporation (MVS)	SPR Corporation (client studies)
45% Design errors 25% Coding errors 20% Bad fixes 5% Documentation er <u>5%</u> Administrative err 100%	20%Requirements errors30%Design errors35%Coding errors35%Bad fixes5%Documentation errors100%
TRW Corporation MITI	Corporation Nippon Electric Cor
60% Design errors 64 <u>40%</u> Coding errors <u>36</u> 100% 100	Design errors 60% Design error Coding errors <u>40%</u> Coding error 100%

Copyright © 2012 by	Capers Jones.	All Rights Reserved.
---------------------	---------------	----------------------

	Lowest	Median	Highest
1 Requirements review (informal)	20%	30%	50%
2 Top-level design reviews (informal)	30%	40%	60%
3 Detailed functional design inspection	30%	65%	85%
4 Detailed logic design inspection	35%	65%	75%
5 Code inspection or static analysis	35%	60%	90%
6 Unit tests	10%	25%	50%
7 New Function tests	20%	35%	65%
8 Integration tests	25%	45%	60%
9 System test	25%	50%	65%
10 External Beta tests	<u>15%</u>	40%	<u>75%</u>
CUMULATIVE EFFICIENCY	75%	98%	99.99%

Defect Romoval Efficiency		Doroont of
Level (Percent)	Number of Projects	Projects
> 99	6	0.40%
95 - 99	104	6.93%
90 - 95	263	17.53%
85 - 90	559	37.26%
80 - 85	408	27.20%
< 80	161	10.73%
Total	1,500	100.00%

CONCLUSIONS ON SOFTWARE QUALITY

- No single quality method is adequate by itself.
- Formal inspections, static analysis, models are effective
- Inspections + static analysis + testing > 97% efficient.
- Defect prevention + removal best overall
- QFD, models, inspections, & six-sigma prevent defects
- Higher CMMI levels, TSP, RUP, Agile, XP are effective
- Quality excellence has ROI > \$15 for each \$1 spent
- High quality benefits schedules, productivity, users

Copyright © 2012 by Capers Jones. All Rights Reserved.

L

SWQUAL08\46

Black	, Rex; <u>Managing the Testing Process;</u> Microsoft Press, 1999.
Crost	y, Phiip B.; <u>Quality is Free;</u> New American Library, Mentor Books, 1979
Gack	Gary, <u>Managing the Black Hole;</u> Business Expert Publishing, 2009
Gilb,	Tom & Graham, Dorothy; <u>Software Inspections;</u> Addison Wesley, 1983.
Jones	s, Capers & Bonsignour, Olivier; <u>The Economics of Software Quality;</u> Addison Wesley, 2011
Jones	s, Capers; <u>Software Engineering Best Practices;</u> McGraw Hill, 2010
Jones	s, Capers; <u>Applied Software Measurement;</u> McGraw Hill, 2008.
Jones	s, Capers; Estimating Software Costs, McGraw Hill, 2007.
Jones	s, Capers; <u>Assessments, Benchmarks, and Best Practices,</u> Addison Wesley, 2000.

Kan, S	iteve; <u>Metrics and Models in Software Quality Engineering,</u> Addison Wesley, 2003.
McCo	nnell; Steve; <u>Code Complete 2;</u> Microsoft Press, 2004
Pirsig	, Robert; <u>Zen and the Art of Motorcycle Maintenance;</u> Bantam; 1984
Radic	ə, Ron; <u>High-quality. Low-cost Software Inspections,</u> 'aradoxican Publishing, 2002.
Wiege	rs, Karl; <u>Peer Reviews in Software, Addison Wesley</u> , 2002.

REFERENCES ON SOFTWARE QUALITY

www.ASQ.org	(American Society for Quality)
www.CASTSoftware.com	(CAST Software Inc.)
www.IFPUG.org	(Int. Func. Pt. Users Group)
www.ISBSG.org	(Int. Software Bench. Standards Group)
www.ISO.org	(International Organization for Standards)
www.ITMPI.org	(Infor. Tech. Metrics and Productivity Institute)
www.PMI.org	(Project Management Institute)
www.processfusion.net	(Process Fusion)
www.SEI.CMU.edu	(Software Engineering Institute)
www.SPR.com	(Software Productivity Research LLC)

Copyright © 2012 by Capers Jones. All Rights Reserved.

SWQUAL08\49

REFERENCES ON SOFTWARE QUALITY

www.qualityassuranceinsti Quality Assuranc	tute.com e Institute (QAI)	
www.associationforsoftwa Association for S	retesting.org oftware Testing	
www.Namcook.com	Namcook Analytics LLC	
www,Galorath.com	Galorath Associates	
www.eoqsg.org	European Institute for Software Qualiy	
www.SANS.org	Sans Institute listing of software defects	
www.CISQ.org	(Consortium for IT software quality)	
www.SEMAT.org	(Software Engineering Methods and Theory)
www.SSQ.org	(Society for Software Quality)	