

INDUSTRY	HAZARD
Airlines	Safety hazards
Air traffic control problems	
Flight schedule confusion	
Navigation equipment failures	
Maintenance schedules thrown off	
Delay in opening Denver airport	
Passengers booked into non-existent seats	
Passengers misidentified as terror suspects	

INDUSTRY	HAZARD
Finance	Financial transaction hazards
Interest calculations in error	
Account balances thrown off	Ŧ
Credit card charges in error	
Funds transfer thrown off	
Mortgage/loan interest paym	ents in error
Hacking and identity theft du	e to software security flaws
Denial of service attacks due	e to software security flaws

INDUSTRY	HAZARD
Health Care	Safety hazards
Patient monitoring devices malfunction	
Operating room schedules thrown off	
Medical instruments malfunction	
Prescription refill problems	
Hazardous drug interactions	
Billing problems	
Medical records stolen or released by acc	cident

State, Local GovernmentsLocal economic hazardsSchool taxes miscalculatedJury records thrown offReal-estate transactions misfiledDivorce, marriage records misfiledAlimony, child support payment records lostDeath records filed for wrong peopleTraffic light synchronization thrown off	INDUSTRY	HAZARD
School taxes miscalculated Jury records thrown off Real-estate transactions misfiled Divorce, marriage records misfiled Alimony, child support payment records lost Death records filed for wrong people Traffic light synchronization thrown off	State, Local Governments	Local economic hazards
Jury records thrown off Real-estate transactions misfiled Divorce, marriage records misfiled Alimony, child support payment records lost Death records filed for wrong people Traffic light synchronization thrown off	School taxes miscalculated	
Real-estate transactions misfiled Divorce, marriage records misfiled Alimony, child support payment records lost Death records filed for wrong people Traffic light synchronization thrown off	Jury records thrown off	
Divorce, marriage records misfiled Alimony, child support payment records lost Death records filed for wrong people Traffic light synchronization thrown off	Real-estate transactions misfiled	
Alimony, child support payment records lost Death records filed for wrong people Traffic light synchronization thrown off	Divorce, marriage records misfiled	
Death records filed for wrong people Traffic light synchronization thrown off	Alimony, child support payment records	lost
Traffic light synchronization thrown off	Death records filed for wrong people	
	Traffic light synchronization thrown off	

INDUSTRY	HAZARD
Commercial Software	
Schedule delays	
Cost overruns	
High recall and maintenance costs	
Extra and costly venture funding round	ls
Equity dilution for shareholders	
Loss of customer confidence	
Opportunities for fast-followers and ne	w competitors

	Case A High quality	Case B Low quality
Defects found	50	500
Fest case creation	\$10,000	\$10,000
Test case execution	\$10,000	\$10,000
Defect repairs	\$10,000	\$70,000
TOTAL	\$30,000	\$90,000
Cost per Defect	\$600	\$180
\$ Cost savings	\$60,000	\$0.00

"If a manufacturing cycle has a high proportion of fixed costs and there is a decline in the number of units produced the cost per unit will go up."

- 1. As quality improves the number of defects goes down.
- 2. Test preparation and test execution act like fixed costs.
- 3. Therefore the "cost per defect" must go up.
- 4. Late defects must cost more than early defects.
- 5. Defects in high quality software cost more than in bad quality software.

SWQUAL08\25

Copyright © 2011 by Capers Jones. All Rights Reserved.

LINES OF CODE HARM HIGH-LEVEL LANGUGES Case A Case B JAVA С KLOC 50 125 **Function points** 1,000 1,000 Code defects found 500 1,250 Defects per KLOC 10.00 10.00 Defects per FP 0.5 1.25 **Defect repairs** \$70,000 \$175,000 \$ per KLOC \$1,400 \$1,400 \$ per Defect \$140 \$140 \$ per Function Point \$70 \$175 \$ cost savings \$105,000 \$0.00 Copyright © 2011 by Capers Jones. All Rights Reserved. SWQUAL08\26

U.S. AVERAGES FOR SOFTWARE QUALITY

Defect Origins	Defect Potential	Removal Efficiency	Delivered Defects
Requirements	1.00	77%	0.23
Design	1.25	85%	0.19
Coding	1.75	95%	0.09
Documents	0.60	80%	0.12
Bad Fixes	<u>0.40</u>	<u>70%</u>	<u>0.12</u>
TOTAL	5.00	85%	0.75
(Function points sho (Code defects = 35%	w all defect sou of total defects	rces - not just co)	ding defects

(D - 1 -. - 12

	Defect	Pomoval	Dolivorod
Defect Origins	Potential	Efficiency	Defects
Requirements	0.40	85%	0.08
Design	0.60	97%	0.02
Coding	1.00	99%	0.01
Documents	0.40	98%	0.01
Bad Fixes	<u>0.10</u>	<u>95%</u>	<u>0.01</u>
TOTAL	2.50	96%	0.13
SERVATIONS			
ERVATIONS	2.50	3070	0.15

Defect Origins Potentia	Removal	Delivered
	Enciency	Defects
Requirements 1.5	0 50%	0.75
Design 2.20	50%	1.10
Coding 2.5	0 80%	0.50
Documents 1.0	0 70%	0.30
Bad Fixes <u>0.8</u>	<u>) 50%</u>	<u>0.40</u>
TOTAL 8.0	0 62%	3.05

GOOD QUALITY RESULTS > 90% SUCCESS RATE

- Formal Inspections (Requirements, Design, and Code)
- Static analysis (for about 25 languages out of 2,500 in all)
- Joint Application Design (JAD)
- · Functional quality metrics using function points
- Structural quality metrics such as cyclomatic complexity
- Defect Detection Efficiency (DDE) measurements
- Defect Removal Efficiency (DRE) measurements
- · Automated Defect tracking tools
- Active Quality Assurance (> 3% SQA staff)
- Utilization of effective methods (Agile, XP, RUP, TSP, etc.)
- · Mathematical test case design based on design of experiments
- Quality estimation tools
- Testing specialists (certified)
- Root-Cause Analysis
- Quality Function Deployment (QFD)

Copyright © 2011 by Capers Jones. All Rights Reserved.

MIXED QUALITY RESULTS: < 50% SUCCESS RATE
CMMI level 3 or higher (some overlap among CMMI levels: Best CMMI 1 groups better than worst CMMI 3 groups)
ISO and IEEE quality standards (Prevent low quality; Little benefit for high-quality teams)
Six-Sigma methods (unless tailored for software projects)
Independent Verification & Validation (IV & V)
Quality circles in the United States (more success in Japan)
Clean-room methods for rapidly changing requirements
Kaizan (moving from Japan to U.S. and elsewhere)
Cost of quality without software modifications

Copyright © 2011 by Capers Jones. All Rights Reserved.

SWQUAL08\32

SWQUAL08\31

POOR QUALITY RESULTS: < 25% SUCCESS RATE

- Testing as only form of defect removal
- Informal Testing and uncertified test personnel
- Testing only by developers; no test specialists
- Passive Quality Assurance (< 3% QA staff)
- Token Quality Assurance (< 1% QA staff)
- LOC Metrics for quality (omits non-code defects)
- · Cost per defect metric (penalizes quality)
- · Failure to estimate quality or risks early
- Quality measurement "leakage" such as unit test bugs

SWQUAL08\33

Copyright © 2011 by Capers Jones. All Rights Reserved.

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

TOTAL SOFTWARE DEFECTS IN RANK ORDER

Defect Origins	Defects per Function Point	
1. Data defects	2.50 *	
2. Code defects	1.75	
3. Test case defects	1.65 *	
4. Web site defects	1.40 *	
5. Design defects	1.25 **	
6. Requirement Defects	1.00 **	
7. Structural defects	0.70 **	
8. Document defects	0.60 **	
9. Bad-fix defects	0.40 **	
10. Requirement creep defect	s 0.30 **	
11. Security defects	0.25 **	
12. Architecture Defects	0.20 *	
TOTAL DEFECTS	12.00	
* NOTE 1: Usually not meas ** NOTE 2: Often omitted from	ured due to lack of size metrics m defect measurements	
opyright © 2011 by Capers Jones. All Rights Reserved.		SWQUAL08\35

I	Defect Origins	Percent of Severity 1 and 2 Defects
1.	Design defects	17.00%
2.	Code defects	15.00%
3.	Structural defects	13.00%
4.	Data defects	11.00%
5.	Requirements creep defects	10.00%
6.	Requirements defects	9.00%
7.	Web site defects	8.00%
8.	Security defects	7.00%
9.	Bad fix defects	4.00%
10.	Test case defects	2.00%
11.	Document defects	2.00%
12.	Architecture Defects	2.00%
то	TAL DEFECTS	100.00%

ORIGINS OF LOW-SEVERITY SOFTWARE DEFECTS

Defect Origins	Percent of Severity 3 and 4 Defects	
 Code defects Data defects Web site defects Design defects Structural defects Structural defects Requirements defects Requirements creep defects Security defects Bad fix defects Test case defects Document defects Architecture Defects TOTAL DEFECTS Severity 3 = minor defects; Severity 	35.00% 20.00% 10.00% 7.00% 6.00% 4.00% 4.00% 4.00% 3.00% 2.00% 1.00% 100.00% verity 4 = cosmetic defects	
Copyright © 2011 by Capers Jones. All Rights Reserved.		SWQUAL08\37

0	Defect Origins (N	Percent of Duplicate Defects (Many reports of the same bugs)		
1.	Code defects	30.00%		
2.	Structural defects	20.00%		
3.	Data defects	20.00%		
4.	Web site defects	10.00%		
5.	Security defects	4.00%		
S.	Requirements defects	3.00%		
7.	Design defects	3.00%		
3.	Bad fix defects	3.00%		
Э.	Requirements creep defect	s 2.00%		
10.	Test case defects	2.00%		
11.	Document defects	2.00%		
12.	Architecture Defects	1.00%		
гот	AL DEFECTS	100.00%		

ORIGINS OF INVALID DEFECTS

Defect Origins P	ercent of Invalid Defects
(Defects	not caused by software itself)
1. Data defects	25.00%
2. Structural defects	20.00%
3. Web site defects	13.00%
4. User errors	12.00%
5. Document defects	10.00%
6. External software	10.00%
7. Requirements creep defects	3.00%
8. Requirements defects	1.00%
9. Code defects	1.00%
10. Test case defects	1.00%
11. Security defects	1.00%
12. Design defects	1.00%
13. Bad fix defects	1.00%
14. Architecture Defects	1.00%
TOTAL DEFECTS	100.00%
Invalid = Defects caused by platfor	ms or external software applications
, , , , , , , , , , , , , , , , , , ,	
pyright © 2011 by Capers Jones. All Rights Reserved.	SWQUAL08\

0	Defect Origins	Wo	ork Hours	Costs (\$75 per hour)
۱.	Security defects		10.00	\$750.00
<u>2.</u>	Design defects		8.50	\$637.50
3.	Requirements creep defects		8.00	\$600.00
1 .	Requirements defects		7.50	\$562.50
5.	Structural defects		7.25	\$543.75
ò.	Architecture defects	7.00	:	\$525.00
7 .	Data defects		6.50	\$487.50
3.	Bad fix defects		6.00	\$450.00
).	Web site defects		5.50	\$412.50
0.	Invalid defects		4.75	\$356.25
1.	Test case defects		4.00	\$300.00
2.	Code defects		3.00	\$225.00
3.	Document defects		1.75	\$131.50
4.	Duplicate defects		1.00	\$75.00
	AVERAGES	5.77	:	\$432.69

Defect Severity	Work Hours	Costs (\$75 per hour)
Severity 1 (total stoppage)	6.00	\$450.00
Severity 2 (major errors)	9.00	\$675.00
Severity 3 (minor errors)	3.00	\$225.00
Severity 4 (cosmetic errors)	1.00	\$75.00
Abeyant defects (special case)	40.00	\$3,000.00
Invalid defects	4.75	\$355.25
Duplicate defects	1.00	\$75.00
faximum can be > 10 times greate	r	

Function.	Sev 1	Sev 2	Sev 3	Sev 4	AVERAGE
Points	Hour	s Hours	Hours	Hours	HOURS
10	2.00	3.00	1.50	0.50	1.75
100	4.00	6.00	2.00	0.50	3.13
1000	6.00	9.00	3.00	1.00	4.75
10000	8.00	12.00	4.00	1.50	6.38
100000	18.00	24.00	6.00	2.00	12.50
Function	Sev 1	Sev 2	Sev 3	Sev 4	AVERAGE
Points	\$	\$	\$	\$	COSTS
10	\$150	\$220	\$112	\$38	\$132
100	\$300	\$450	\$150	\$38	\$234
1000	\$450	\$675	\$225	\$75	\$356
10000	\$600	\$900	\$300	\$113	\$478
100000	\$1350	\$1800	\$450	\$150	\$938

Function Points	10	100	1000	10,000	100,000
Users 1	55%	27%	12%	3%	1%
10	65%	35%	17%	7%%	3%
100	75%	42%	20%	10%	7%
1000	85%	50%	<u>27%</u>	12%	10%
10,000	95%	75%	35%	20%	12%
100,000	99%	87%	45%	35%	20%
1,000,000	100%	96%	77%	45%	32%
0,000,000	100%	100%	90%	65%	45%

Removal method	Stat. Analy.	Unit Test	Inspect.	Funct. Test	Sys. Test	Maint
Preparation	1	2	5	6	8	7
Execution	1	1	2	4	6	3
Repair	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>2</u>	<u>2</u>
Validate	1	1	1	2	4	5
Integrate	1	1	1	2	4	6
Distribute	1	1	1	2	3	7
TOTAL DAYS	6	7	11	17	27	30
Defect repairs take	e < 12% of	elapse	d time			

Sovarity 1.		1% at roloaso
Seventy 1.	TOTAL FAILURE S	1% at release
Severity 2:	MAJOR PROBLEMS	20% at release
Severity 3:	MINOR PROBLEMS	35% at release
Severity 4:	COSMETIC ERRORS	44% at release
STRUCTURAL	MULTI-TIER DEFECTS	15% of reports
	OR SYSTEM ERRORS 15%	of reports
DUPLICATE	MULTIPLE REPORTS	30% of reports
ABEYANT	CAN'T RECREATE ERROR	5% of reports

	(De	efects per Fun	ction Point)		
	System Software	Commercial Software	Information Software	Military Software	Outsource Software
Defect Potentials	6.0	5.0	4.5	7.0	5.2
Defect Removal Efficiency	94%	90%	73%	96%	92%
Delivered Defects	0.36	0.50	1.22	0.28	0.42
First Year Discovery Rate	65%	70%	30%	75%	60%
First Year Reported Defects	0.23	0.35	0.36	0.21	0.25

	(De	efects per Fun	ction Point)		
	Web Software	Embedded Software	SEI-CMM 3 Software	SEI-CMM 1 Software	Overall Average
Defect Potentials	4.0	5.5	5.0	5.75	5.1
Defect Removal Efficiency	72%	95%	95%	83%	86.7%
Delivered Defects	1.12	0.3	0.25	0.90	0.68
First Year Discovery Rate	95%	90%	60%	35%	64.4%
First Year Reported Defects	1.06	0.25	0.15	0.34	0.42

U. S. SOFTWARE QUALITY AVERAGES CIRCA 2011

(Data	a Expressed	d in terms of	Defects per	Function Po	int)
Size	Defect Potential	Defect Removal Efficiency	Delivered Defects	1st Year Discovery Rate	1st Year Reported Defects
1	1.85	95.00%	0.09	90.00%	0.08
10	2.45	92.00%	0.20	80.00%	0.16
100	3.68	90.00%	0.37	70.00%	0.26
1000	5.00	85.00%	0.75	50.00%	0.38
10000	7.60	78.00%	1.67	40.00%	0.67
100000	9.55	75.00%	2.39	30.00%	0.72
VERAGE	5.02	85.83%	0.91	60.00%	0.38

DEFECTS AND SOFTWARE METHODOLGOIES

Software methods	Defect Potential	Removal Efficiency	Delivered Defects
Waterfall	5.50	80%	1.10
Iterative	4.75	87%	0.62
Object-Oriented	4.50	88%	0.54
Rational Unified Process (RUP)	4.25	92%	0.34
Agile	4.00	90%	0.40
PSP and TSP	3.50	96%	0.14
85% Certified reuse	1.75	99%	0.02

(Data Expressed in Terms of Defects per Function Point For projects nominally <u>1000</u> function points in size)

DEFECTS AND SOFTWARE METHODOLGOIES

(Data Expressed in Terms of Defects per Function Point For projects nominally <u>10,000</u> function points in size)

Software methods	Defect Potential	Removal Efficiency	Delivered Defects
Waterfall	7.00	75%	1.75
Iterative	6.25	82%	1.13
Object-Oriented	5.75	85%	0.86
Rational Unified Process (RUP)	5.50	90%	0.55
Agile	5.50	87%	0.72
PSP and TSP	5.00	94%	0.30
85% Certified reuse	2.25	96%	0.09
Copyright © 2011 by Capers Jones. All Rights Reserved.			SWQUAL08

Because defect remo defect origins is a va	val is such luable unde	a major co rtaking.	ost element	t, studying
IBM Corporation (MV	S)	SPR Cor	poration (o	client studies)
45% Design error 25% Coding error 20% Bad fixes 5% Documentat 5% Administrati 100%	s ·s ion errors ve errors	20% 30% 35% 10% <u>5%</u> 100%	Requirem Design er Coding er Bad fixes Documen	eents errors rrors rrors tation errors
TRW Corporation	Mitre Corp	oration	Nippor	n Electric Corp.
60% Design errors 40% Coding errors 100%	64% Des <u>36%</u> Co 100%	sign errors ding errors	s 60% s <u>40%</u> 100%	Design errors Coding errors

DEVELOPMENT DEFECTS REM	IOVED
Inspections	350
Static analysis	300
Testing	250
Subtotal	900
USER-REPORTED DEFECTS IN	FIRST 90 DAYS
Valid unique defects	100
TOTAL DEFECT VOLUME	
Defect totals	1000
REMOVAL EFFICIENCY	90%

	Lowest	Median	Highest
1 Requirements review (informal)	20%	30%	50%
2 Top-level design reviews (informal)	30%	40%	60%
3 Detailed functional design inspection	30%	65%	85%
4 Detailed logic design inspection	35%	65%	75%
5 Code inspection or static analysis	35%	60%	90%
6 Unit tests	10%	25%	50%
7 New Function tests	20%	35%	65%
8 Integration tests	25%	45%	60%
9 System test	25%	50%	65%
0 External Beta tests	<u>15%</u>	40%	<u>75%</u>
CUMULATIVE EFFICIENCY	75%	98%	99.99%

Defect Removal Efficiency Level (Percent)	Number of Projects	Percent of Projects
> 99	6	0.40%
95 - 99	104	6.93%
90 - 95	263	17.53%
85 - 90	559	37.26%
80 - 85	408	27.20%
< 80	161	10.73%
Total	1.500	100.00%

CONCLUSIONS ON SOFTWARE QUALITY

- No single quality method is adequate by itself.
- Formal inspections, static analysis are most efficient
- Inspections + static analysis + testing > 97% efficient.
- Defect prevention + removal best overall
- Quality function deployment & six-sigma prevent defects
- Higher CMMI levels, TSP, RUP, Agile, XP are effective
- Quality excellence has ROI > \$15 for each \$1 spent
- High quality benefits schedules, productivity, users

Coppight © 2011 by Capers Jones. All Rights Reserved.

SWQUAL08\63

Bla	ck, Rex; <u>Managing the Testing Process;</u> Microsoft Press, 1999.
Cro	osby, Phiip B.; <u>Quality is Free;</u> New American Library, Mentor Books, 1979.
Ga	ck Gary, <u>Managing the Black Hole;</u> Business Expert Publishing, 2009
Gill	b, Tom & Graham, Dorothy; <u>Software Inspections</u> ; Addison Wesley, 1983.
Jor	nes, Capers & Bonsignour, Olivier; <u>The Economics of Software Quality;</u> Addison Wesley, 2011
Jor	nes, Capers; <u>Software Engineering Best Practices</u> ; McGraw Hill, 2010
Jor	nes, Capers; Applied Software Measurement; McGraw Hill, 2008.
Jor	nes, Capers; Estimating Software Costs, McGraw Hill, 2007.
Jor	nes, Capers; <u>Assessments, Benchmarks, and Best Practices,</u> Addison Wesley, 2000.

Kan,	Steve; <u>Metrics and Models in Software Quality Engineering</u> , Addison Wesley, 2003.
McC	onnell; Steve; <u>Code Complete 2</u> ; Microsoft Press, 2004
Pirsi	g, Robert; <u>Zen and the Art of Motorcycle Maintenance</u> ; Bantam; 1984
Radi	ce, Ron; <u>High-quality, Low-cost Software Inspections,</u> Paradoxican Publishing, 2002.
Wieg	ers, Karl; <u>Peer Reviews in Software, Addison Wesley</u> , 2002.

www.ASQ.org	(American Society for Quality)
www.IFPUG.org	(Int. Func. Pt. Users Group)
www.ISBSG.org	(Int. Software Bench. Standards Group)
www.ISO.org	(International Organization for Standards)
www.ITMPI.org	(Infor. Tech. Metrics and Productivity Institute)
www.PMI.org	(Project Management Institute)
www.processfusion.net	(Process Fusion)
www.SEI.CMU.edu	(Software Engineering Institute)
www.SPR.com	(Software Productivity Research LLC)
www.SSQ.org	(Society for Software Quality)

