

SQGNE 9 February 2011

A Fundamental Approach to

Improving Software Quality

Rick Spiewak

The MITRE Corporation

rspiewak@mitre.org

Approved for Public Release; Distribution Unlimited. Case Number: 09-1262

© 2011-The MITRE Corporation. All rights reserved.

What is Software Quality Management?:
An Application of the Basic Principles of Quality Management

“Quality is free. It‟s not a gift, but it is

free. What costs money are the

unquality things – all the actions that

involve not doing jobs right the first

time.” 1

1 “Quality Is Free: The Art of Making Quality Certain”, Philip B. Crosby.

McGraw-Hill Companies (January 1, 1979)

2

What is Software Quality Management?:
An Application of the Basic Principles of Quality Management

“You can‟t inspect quality into a

product.” 2

2 Harold F. Dodge, as quoted in “Out of the Crisis”, W. Edwards Deming.

MIT, 1982

3

What is Software Quality Management?:
An Application of the Basic Principles of Quality Management

“Trying to improve software quality

by increasing the amount of testing

is like trying to lose weight by

weighing yourself more often.” 3

3 “Code Complete 2” Steve McConnell. Microsoft Press 2004

4

A Fundamental Approach

 Define quality:
– Quality is:

“Meeting the requirements the first time every time.”

– Quality is not:
“Exceeding the customer’s expectations.”

 Quality improvement requires changes in processes
– Fixing problems earlier in the process is more effective and

less costly than fixing them later.

– The causes of defects must be identified and fixed in the

processes

– Fixing defects without identifying and fixing the causes

does not improve product quality

Setting higher standards will help drive better

development practices

5

“Meeting the requirements” means knowing what is required and doing just that.
“Exceeding the customer’s expectations” is particularly troublesome in software development: it enables
feature creep and ignores the extra costs of documentation, training, support and sustainment

Two Ways to Get Started

 Classical Quality Management: start fresh in

identifying and fixing process defects which may be

unique to your organization

 Richard Hamming: “How do I obey Newton‟s rule?

He said, „If I have seen further than others, it is

because I‟ve stood on the shoulders of giants.‟ These

days we stand on each other‟s feet”

If we want to profit from the work of

pioneers in the field of software quality, we

owe it to ourselves and them to stand on

their shoulders.

6

Hamming, Richard. You and Your Research. Transcription of the Bell Research Colloquium Seminar, 7 Mar.
1986.

A rigorous approach to Quality Management would start fresh and analyze specific root causes, leading to
organization-specific process changes. However, there are well-tested best practices which can be
implemented without having to discover them anew in each organization.

Phases of Software Development

Requirements Definition

Architecture

Design

Construction
Testing

Documentation

Training

Deployment

Sustainment

7

Just as in the case of other processes, all phases of software development are candidates for quality
management.
This discussion is focused on the construction phase
Requirements definition has been addressed only by including quality related requirements. However, this is a
likely candidate for major improvements.

Historically a “write-only” exercise:
If it doesn’t break, no one else reads it

Ad-hoc or absent standards

Testing as a separate exercise

Re-work (patch) to fix defects (“bugs”)

Features take precedence over quality

Definition of quality is not rigorous

Standards and best practices are not

uniformly followed because they are

not normally stated as requirements

What’s Wrong With Software Construction?

8

What’s Missing in Software Construction?

If we built buildings this way….

They might not stay standing

Or, we might not

9

Typical Building Code Requirements:

 Building Heights and Areas

 Types of Construction

 Soils and Foundations

 Fire-Resistance and Fire Protection Systems

 Means of Egress

 Accessibility

 Interior Finishes and Environment

 Energy Efficiency

 Exterior Walls

 Roof Assemblies

 Rooftop Structures

 Structural Design

 Materials (Concrete, Steel, Wood, etc.)

 Electrical, Mechanical, Plumbing….

Buildings are not built this way
Building construction has standards!

10

Missing: the “Building Code” for software

There is a lack of uniformity and

standards

Historically, these are created ad hoc

by each organization

There is no penalty for inadequate

standards

Best practices are often discarded

under cost and schedule pressure

11

How Do We Fix This?

We must identify and implement

industry best practices

We must enforce best practices
–Rules

–Requirements

This is the way to make sure our

software doesn’t burn up or fall down!

12

One weakness of a traditional approach needs to be addressed directly. That is, the idea of specifying the
results we want, coupled with a reluctance to specify how to achieve them. In the case of known best
practices, we need to be specific. If a development organization doesn’t already use best practices, they are
unlikely to adopt them for our project unless we require it.

Improving Development Practices:
Best Practices in Software Development

 Uniform Coding Standards

– References

– Tools

– Practices

 Automated Unit Testing

– Design for test

– Tools for testing

– An Enterprise approach

 Root Cause Analysis and Classification

– Analytic methods

– Taxonomy

 Code Reuse

– Development techniques

– Reliable sources

Top level categories :

• 0xxx Planning

• 1xxx Requirements and Features

• 2xxx Functionality as Implemented

• 3xxx Structural Bugs

• 4xxx Data

• 5xxx Implementation

• 6xxx Integration

• 7xxx Real-Time and Operating System

• 8xxx Test Definition or Execution Bugs

• 9xxx Other

13

Coding standards are expressed in published books, and checked by tools and peer reviews
We need to make automated unit testing pervasive, with techniques shared by developers and testers.
When developers have to create unit tests, their approach to programming changes in order to make the code
more testable.

Analytic methods for Root Cause analysis include “Five Whys”, and Kepner-Trego Problem Analysis.

Code Reuse, when done sensibly, reduces both effort and defects.

Improving Development Practices:
Uniform Coding Standards

 References

– .NET

 Framework Design Guidelines: Conventions, Idioms,
and Patterns for Reusable .NET Libraries

 Practical Guidelines and Best Practices for
Microsoft Visual Basic and C# Developers

– Java

 Effective Java Programming Language Guide

 The Elements of Java Style

 Tools and Techniques

– Static Code Analysis

 .NET

- FxCop

- DevPartner Studio

 Java

- FindBugs (Eclipse plug-in)

- ParaSoft JTest

– Code Review (with Government audit)

14

Details on references:
Cwalina, Krzysztof and Abrams, Brad, Framework Design Guidelines: Conventions, Idioms, and Patterns for
Reusable .NET Libraries (2nd Edition) (Microsoft Net Development Series), Addison-Wesley Professional (2008)
Balena, Francesco and Dimauro, Giuseppe, Practical Guidelines and Best Practices for Microsoft Visual Basic
and C# Developers
Bloch, Joshua, Effective Java Programming Language Guide, Prentice Hall (2001)
Ambler, Scott et al, The Elements of Java Style, Cambridge University Press (2000)

Improving Development Practices: Tools
.NET: Enterprise Coding Standards – Static Analysis with FxCop

 Microsoft developed free tool

 Equivalent version in Visual Studio

 Analyzes managed (.NET) code

 Language independent

 Applied to compiled code, analyzes
Microsoft Intermediate Language

 Applies Microsoft best practices as used
in .NET Framework

 Rules also documented in: “Framework
Design Guidelines: Conventions, Idioms,
and Patterns for Reusable .NET
Libraries”

15

Improving Development Practices:
Coding Standards – Code Review

 Preparation requires inspection of code by developer – may
uncover defects

 Review by other programmers – leads to sharing of ideas,
improved coding techniques

 Review by others may uncover defects or poor techniques

 To be effective, focus should be on determining causes of
defects, fixing causes.

 Government audit provides needed assurance on the level
of conduct

16

Improving Development Practices:
Automated Unit Testing

 Design Impact

– Design for Test

– Test Driven Development

 Tools and Techniques

– .NET

 NUnit/NCover/NCover Explorer

 Visual Studio

– Java

 JUnit/Cobertura (etc.)

 Enterprise Impact

– Extension to Enterprise

– Uniform Tool Usage

– Use by Test Organizations

17

Improving Development Practices:
Automated Unit Testing

 Design Impact

– Design for Test

– Test Driven Development

 Tools and Techniques

– .NET

 NUnit/NCover/NCover Explorer

 Visual Studio

– Java

 JUnit/Cobertura (etc.)

 Enterprise Impact

– Extension to Enterprise

– Uniform Tool Usage

– Use by Test Organizations

17

Improving Development Practices:
Root Cause Analysis

 A CMMI 5 practice area – but this should be a

requirement regardless of CMMI level.

 Find the cause
– “Five Whys”

– Kepner-Trego Problem Analysis

– IBM: Defect Causal Analysis

 Fix the cause => change the process

 Fix the problem: use the changed process

 Problem: How to Preserve Knowledge?
– Answer: Classify Root Causes

– Look for patterns

– Metrics
 Statistics

 Pareto Diagrams

Top level categories :

• 0xxx Planning

• 1xxx Requirements and Features

• 2xxx Functionality as Implemented

• 3xxx Structural Bugs

• 4xxx Data

• 5xxx Implementation

• 6xxx Integration

• 7xxx Real-Time and Operating System

• 8xxx Test Definition or Execution Bugs

• 9xxx Other

18

Improving Development Practices:
Root Cause Analysis

 A CMMI 5 practice area – but this should be a

requirement regardless of CMMI level.

 Find the cause
– “Five Whys”

– Kepner-Trego Problem Analysis

– IBM: Defect Causal Analysis

 Fix the cause => change the process

 Fix the problem: use the changed process

 Problem: How to Preserve Knowledge?
– Answer: Classify Root Causes

– Look for patterns

– Metrics
 Statistics

 Pareto Diagrams

Top level categories :

• 0xxx Planning

• 1xxx Requirements and Features

• 2xxx Functionality as Implemented

• 3xxx Structural Bugs

• 4xxx Data

• 5xxx Implementation

• 6xxx Integration

• 7xxx Real-Time and Operating System

• 8xxx Test Definition or Execution Bugs

• 9xxx Other

18

When the requirement for testing is included, design approaches may be altered to accommodate this. For
example, global references hinder testability while passing all data as parameters into a routine and collecting
the result as an output makes testing much easier.

Root cause analysis is the key to quality improvement

Improving Development Practices:
Root Cause Classification

 Beizer Taxonomy

– Classification System for Root Causes of Software Defects

– Developed by Boris Beizer

– Published in 1990 in “Software Testing Techniques 2nd Edition”

– Modified by Otto Vinter (around 1998)

– Based on the Dewey Decimal System

– Extensible Classification

– The uniform use of this taxonomy provides an Enterprise view
of problem areas in software development.

 Orthogonal Defect Classification

 Defect Causal Analysis

19

Improving Development Practices:
Root Cause Classification

 Beizer Taxonomy

– Classification System for Root Causes of Software Defects

– Developed by Boris Beizer

– Published in 1990 in “Software Testing Techniques 2nd Edition”

– Modified by Otto Vinter (around 1998)

– Based on the Dewey Decimal System

– Extensible Classification

– The uniform use of this taxonomy provides an Enterprise view
of problem areas in software development.

 Orthogonal Defect Classification

 Defect Causal Analysis

19

Classifying Root Causes: Beizer* Taxonomy

Top level categories :

• 0xxx Planning

• 1xxx Requirements and Features

• 2xxx Functionality as Implemented

• 3xxx Structural Bugs

• 4xxx Data

• 5xxx Implementation

• 6xxx Integration

• 7xxx Real-Time and Operating System

• 8xxx Test Definition or Execution Bugs

• 9xxx Other

* Boris Beizer, "Software Testing Techniques", Second edition, 1990, ISBN-0-442-20672-0

20

Classifying Root Causes: Beizer* Taxonomy

Top level categories :

• 0xxx Planning

• 1xxx Requirements and Features

• 2xxx Functionality as Implemented

• 3xxx Structural Bugs

• 4xxx Data

• 5xxx Implementation

• 6xxx Integration

• 7xxx Real-Time and Operating System

• 8xxx Test Definition or Execution Bugs

• 9xxx Other

* Boris Beizer, "Software Testing Techniques", Second edition, 1990, ISBN-0-442-20672-0

20

There are other classification methods which might be used:
e.g. Orthogonal Defect Classification – primarily developed by IBM.
However, the Beizer Taxonomy lends itself well to further analysis
(Database queries, Pareto charts, cross-developer comparisons, etc.)

Otto Vinter’s amended version includes more statistics and added detailed categories,
with Boris Beizer’s endorsement

Improving Development Practices:
Software Reuse for .NET

 Extensibility features in .NET

 Microsoft Patterns and Practices

– Enterprise Library

 Data Access Application Block

 Logging Application Block

 Tracing (Core)

 .NET 3.5 Features

– Windows Presentation Foundation

– Windows Communication Foundation

– Windows Workflow

– LINQ

21

How Much Does It Cost?

??

?

? ??
?

?

?
?

22

The SEER-SEM1 Modeling tool

Based on analysis of thousands of projects

Takes into account a wide variety of factors:
– Sizing

– Technology

– Staffing

– Tool Use

– Testing

– QA

Delivers outputs:
– Effort

– Duration

– Cost

– Expected Defects

1SEER® is a trademark of Galorath Incorporated
24

The SEER-SEM1 Modeling tool

Based on analysis of thousands of projects

Takes into account a wide variety of factors:
– Sizing

– Technology

– Staffing

– Tool Use

– Testing

– QA

Delivers outputs:
– Effort

– Duration

– Cost

– Expected Defects

1SEER® is a trademark of Galorath Incorporated
24

Cost/Benefit Analysis:
Automated Unit Testing (AUT)

 Cost and Benefits of Automated Unit Testing
 The situation:

– Organizations either use AUT or don’t

– No one will stop to compare

(or, if they do, they won’t tell anyone what they found out!)

 The basic cost problem:
– To test n lines of code, it takes another n to n + 25% lines

– Why wouldn’t it cost more than twice as much to do this?

– If there isn’t any more to it, why use this technique?

 The solution:
– Use a more complete model

– There’s more to the cost of software than lines of code!

23

Fischman, Lee. McRitchie, Karen and Galorath, Daniel D. Inside SEER-SEM, CrossTalk Magazine, April 2005

Cost/Benefit Analysis: Technique

Consider the cost of defects:
– Legacy defects to fix

– New defects to fix

– Defects not yet fixed (legacy and new)

Model costs using SEER-SEM scenarios
– Cost model reflecting added/modified code

– Comparison among scenarios with varying

development techniques

– Schedule, Effort for each scenario

– Probable undetected remaining defects after

FQT for each scenario

25

Cost/Benefit Analysis: Technique

Consider the cost of defects:
– Legacy defects to fix

– New defects to fix

– Defects not yet fixed (legacy and new)

Model costs using SEER-SEM scenarios
– Cost model reflecting added/modified code

– Comparison among scenarios with varying

development techniques

– Schedule, Effort for each scenario

– Probable undetected remaining defects after

FQT for each scenario

25

The cost of defects is what Crosby calls the “cost of quality”.

Cost-Benefit Analysis: Example

 The Project:
– Three major applications

– Two vendor-supplied applications

– Moderate criticality

 The cases:
– Baseline: no AUT

 Nominal team experience with environment, tools, practices

– Introducing AUT

 Increases automated tool use parameter

 Decreases development environment experience

 Increases volatility

– Introducing AUT and Added Experience

 Increases automated tool use parameter

 Previous changes to experience and volatility are eliminated

26

Cost-Benefit Analysis: Results

 Estimated schedule months
 Estimated effort

– Effort months

– Effort hours

– Effort costs

 Estimate of defect potential
– Size

– Complexity

– ….

 Estimate of delivered defects
– Project size

– Programming language

– Requirements definition formality

– Specification level

– Test level

– …

27

Defect Prediction Detail*

Baseline Introducing
AUT

Difference AUT +
Experience

Difference

Potential Defects 738 756 2% 668 -9%

Defects Removed 654 675 3% 600 -8%

Delivered Defects 84 81 -4% 68 -19%
Defect Removal
Efficiency 88.60% 89.30% 89.80%
Hours/Defect
Removed 36.52 37.41 2% 35.3 -3%

* SEER-SEM Analysis by Karen McRitchie, VP of Development, Galorath Incorporated

28

When introducing AUT, you see a small increase in the defect removal efficiency. This increase is initially offset by an increase in the
overall defect potential that results in an increased number of hours spent removing each defect. However, when you couple AUT
with the requisite experience, the increase in defect removal efficiency is boosted by the fact that the overall defect potential is
reduced. This reduction in defect potential, combined with the overall effort reduction, quantifies the intuitive adage that the
cheapest defect to remove is an avoided defect.

Cost Model*

Baseline Introducing
AUT

Difference AUT +
Experience

Difference

Schedule Months 17.09 17.41 2% 16.43 -4%

Effort Months 157 166 6% 139 -11%

Hours 23,881 25,250 6% 21,181 -11%

Base Year Cost $2,733,755 $2,890,449 6% $2,424,699 -11%

Defect Prediction 84 81 -4% 68 -19%

* SEER-SEM Analysis by Karen McRitchie, VP of Development, Galorath Incorporated

29

Summary

The use of known best practices can

improve the quality of software

Better results can be achieved at the same

time as lower costs

30

Questions

?
31

Selected References

 Spiewak, Rick and McRitchie, Karen. Using Software Quality
Methods to Reduce Cost and Prevent Defects, CrossTalk, Dec
2008.

 McConnell, Steve. Code Complete 2. Microsoft Press, 2004.

 Crosby, Philip B. Quality Is Free: The Art of Making Quality
Certain. McGraw-Hill Companies, 1979.

 Beizer, Boris. Software Testing Techniques. 2nd ed.
International Thomson Computer Press, 1990.

32

http://www.crosstalkonline.org/storage/issue-archives/2008/200812/200812-Spiewak.pdf

